Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Taichi Haruna is active.

Publication


Featured researches published by Taichi Haruna.


Journal of Theoretical Biology | 2008

Minimal model of a cell connecting amoebic motion and adaptive transport networks

Yukio Pegio Gunji; Tomohiro Shirakawa; Takayuki Niizato; Taichi Haruna

A cell is a minimal self-sustaining system that can move and compute. Previous work has shown that a unicellular slime mold, Physarum, can be utilized as a biological computer based on cytoplasmic flow encapsulated by a membrane. Although the interplay between the modification of the boundary of a cell and the cytoplasmic flow surrounded by the boundary plays a key role in Physarum computing, no model of a cell has been developed to describe this interplay. Here we propose a toy model of a cell that shows amoebic motion and can solve a maze, Steiner minimum tree problem and a spanning tree problem. Only by assuming that cytoplasm is hardened after passing external matter (or softened part) through a cell, the shape of the cell and the cytoplasmic flow can be changed. Without cytoplasm hardening, a cell is easily destroyed. This suggests that cytoplasmic hardening and/or sol-gel transformation caused by external perturbation can keep a cell in a critical state leading to a wide variety of shapes and motion.


Physica D: Nonlinear Phenomena | 2011

Permutation complexity via duality between values and orderings

Taichi Haruna; Kohei Nakajima

Abstract We study the permutation complexity of finite-state stationary stochastic processes based on a duality between values and orderings between values. First, we establish a duality between the set of all words of a fixed length and the set of all permutations of the same length. Second, on this basis, we give an elementary alternative proof of the equality between the permutation entropy rate and the entropy rate for a finite-state stationary stochastic processes first proved in [J.M. Amigo, M.B. Kennel, L. Kocarev, The permutation entropy rate equals the metric entropy rate for ergodic information sources and ergodic dynamical systems, Physica D 210 (2005) 77–95]. Third, we show that further information on the relationship between the structure of values and the structure of orderings for finite-state stationary stochastic processes beyond the entropy rate can be obtained from the established duality. In particular, we prove that the permutation excess entropy is equal to the excess entropy, which is a measure of global correlation present in a stationary stochastic process, for finite-state stationary ergodic Markov processes.


Lecture Notes in Computer Science | 2010

A non-Boolean lattice derived by double indiscernibility

Yukio Pegio Gunji; Taichi Haruna

The central notion of a rough set is the indiscernibility that is based on an equivalence relation. Because an equivalence relation shows strong bondage in an equivalence class, it forms a Galois connection and the difference between the upper and lower approximations is lost. Here, we introduce two different equivalence relations, one for the upper approximation and one for the lower approximation, and construct a composite approximation operator consisting of different equivalence relations. We show that a collection of fixed points with respect to the operator is a lattice and there exists a representation theorem for that construction.


Entropy | 2013

Permutation Complexity and Coupling Measures in Hidden Markov Models

Taichi Haruna; Kohei Nakajima

Recently, the duality between values (words) and orderings (permutations) has been proposed by the authors as a basis to discuss the relationship between information theoretic measures for finite-alphabet stationary stochastic processes and their permutatio nanalogues. It has been used to give a simple proof of the equality between the entropy rate and the permutation entropy rate for any finite-alphabet stationary stochastic process and to show some results on the excess entropy and the transfer entropy for finite-alphabet stationary ergodic Markov processes. In this paper, we extend our previous results to hidden Markov models and show the equalities between various information theoretic complexity and coupling measures and their permutation analogues. In particular, we show the following two results within the realm of hidden Markov models with ergodic internal processes: the two permutation analogues of the transfer entropy, the symbolic transfer entropy and the transfer entropy on rank vectors, are both equivalent to the transfer entropy if they are considered as the rates, and the directed information theory can be captured by the permutation entropy approach.


BioSystems | 2017

Inverse Bayesian inference as a key of consciousness featuring a macroscopic quantum logical structure

Yukio Pegio Gunji; Shuji Shinohara; Taichi Haruna; Vasileios Basios

To overcome the dualism between mind and matter and to implement consciousness in science, a physical entity has to be embedded with a measurement process. Although quantum mechanics have been regarded as a candidate for implementing consciousness, nature at its macroscopic level is inconsistent with quantum mechanics. We propose a measurement-oriented inference system comprising Bayesian and inverse Bayesian inferences. While Bayesian inference contracts probability space, the newly defined inverse one relaxes the space. These two inferences allow an agent to make a decision corresponding to an immediate change in their environment. They generate a particular pattern of joint probability for data and hypotheses, comprising multiple diagonal and noisy matrices. This is expressed as a nondistributive orthomodular lattice equivalent to quantum logic. We also show that an orthomodular lattice can reveal information generated by inverse syllogism as well as the solutions to the frame and symbol-grounding problems. Our model is the first to connect macroscopic cognitive processes with the mathematical structure of quantum mechanics with no additional assumptions.


rough sets and knowledge technology | 2009

Double Approximation and Complete Lattices

Taichi Haruna; Yukio Pegio Gunji

A representation theorem for complete lattices by double approximation systems proved in [Gunji, Y.-P., Haruna, T., submitted] is analyzed in terms of category theory. A double approximation system consists of two equivalence relations on a set. One equivalence relation defines the lower approximation and the other defines the upper approximation. It is proved that the representation theorem can be extended to an equivalence of categories.


european conference on artificial life | 2013

Robustness and Directed Structures in Ecological Flow Networks.

Taichi Haruna

Robustness of ecological flow networks under random failure of arcs is considered with respect to two different functionalities: coherence and circulation. In our previous work, we showed that each functionality is associated with a natural path notion: lateral path for the former and directed path for the latter. Robustness of a network is measured in terms of the size of the giant laterally connected arc component and that of the giant strongly connected arc component, respectively. We study how realistic structures of ecological flow networks affect the robustness with respect to each functionality. To quantify the impact of realistic network structures, two null models are considered for a given real ecological flow network: one is random networks with the same degree distribution and the other is those with the same average degree. Robustness of the null models is calculated by theoretically solving the size of giant components for the configuration model. We show that realistic network structures have positive effect on robustness for coherence, whereas they have negative effect on robustness for circulation.


BioSystems | 2013

Theory of interface: category theory, directed networks and evolution of biological networks.

Taichi Haruna

Biological networks have two modes. The first mode is static: a network is a passage on which something flows. The second mode is dynamic: a network is a pattern constructed by gluing functions of entities constituting the network. In this paper, first we discuss that these two modes can be associated with the category theoretic duality (adjunction) and derive a natural network structure (a path notion) for each mode by appealing to the category theoretic universality. The path notion corresponding to the static mode is just the usual directed path. The path notion for the dynamic mode is called lateral path which is the alternating path considered on the set of arcs. Their general functionalities in a network are transport and coherence, respectively. Second, we introduce a betweenness centrality of arcs for each mode and see how the two modes are embedded in various real biological network data. We find that there is a trade-off relationship between the two centralities: if the value of one is large then the value of the other is small. This can be seen as a kind of division of labor in a network into transport on the network and coherence of the network. Finally, we propose an optimization model of networks based on a quality function involving intensities of the two modes in order to see how networks with the above trade-off relationship can emerge through evolution. We show that the trade-off relationship can be observed in the evolved networks only when the dynamic mode is dominant in the quality function by numerical simulations. We also show that the evolved networks have features qualitatively similar to real biological networks by standard complex network analysis.


rough sets and knowledge technology | 2009

Lattice Derived by Double Indiscernibility and Computational Complementarity

Yukio Pegio Gunji; Taichi Haruna; Eugene S. Kitamura

We here concentrate on equivalence relation, and show that the composition of upper approximation of one equivalence relation and the lower one of the other equivalence relation can form a lattice. We also show that this method can be used to define computational complementarity in automata.


IWNC | 2009

Wholeness and Information Processing in Biological Networks: An Algebraic Study of Network Motifs

Taichi Haruna; Yukio Pegio Gunji

In this paper we address network motifs found in information processing biological networks. Network motifs are local structures in a whole network on one hand, they are materializations of a kind of wholeness to have biological functions on the other hand. We formalize the wholeness by the notion of sheaf. We also formalize a feature of information processing by considering an internal structure of nodes in terms of their information processing ability. We show that two network motifs called bi-fan (BF) and feed-forward loop (FFL) can be obtained by purely algebraic considerations.

Collaboration


Dive into the Taichi Haruna's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomohiro Shirakawa

National Defense Academy of Japan

View shared research outputs
Top Co-Authors

Avatar

Igor Balaz

University of Novi Sad

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge