Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Taichi Oguchi is active.

Publication


Featured researches published by Taichi Oguchi.


Journal of General Virology | 2000

In vitro phosphorylation of the movement protein of tomato mosaic tobamovirus by a cellular kinase

Yasuhiko Matsushita; Kohtaro Hanazawa; Kuniaki Yoshioka; Taichi Oguchi; Shigeki Kawakami; Yuichiro Watanabe; Masamichi Nishiguchi; Hiroshi Nyunoya

The movement protein (MP) of tomato mosaic virus (ToMV) was produced in E. coli as a soluble fusion protein with glutathione S-transferase. When immobilized on glutathione affinity beads, the recombinant protein was phosphorylated in vitro by incubating with cell extracts of Nicotiana tabacum and tobacco suspension culture cells (BY-2) in the presence of [gamma-(32)P]ATP. Phosphorylation occurred even after washing the beads with a detergent-containing buffer, indicating that the recombinant MP formed a stable complex with some protein kinase(s) during incubation with the cell extract. Phosphoamino acid analysis revealed that the MP was phosphorylated on serine and threonine residues. Phosphorylation of the MP was decreased by addition of kinase inhibitors such as heparin, suramin and quercetin, which are known to be effective for casein kinase II (CK II). The phosphorylation level was not changed by other types of inhibitor. In addition, as shown for animal and plant CK II, [gamma-(32)P]GTP was efficiently used as a phosphoryl donor. Phosphorylation was not affected by amino acid replacements at serine-37 and serine-238, but was completely inhibited by deletion of the carboxy-terminal 9 amino acids, including threonine-256, serine-257, serine-261 and serine-263. These results suggest that the MP of ToMV could be phosphorylated in plant cells by a host protein kinase that is closely related to CK II.


Plant Biotechnology Journal | 2013

Genetically engineered trees for plantation forests: key considerations for environmental risk assessment

Hely Häggman; Alan Raybould; Aluízio Borém; Thomas R. Fox; Levis Handley; Magnus Hertzberg; Meng-Zu Lu; Philip Macdonald; Taichi Oguchi; Giancarlo Pasquali; Les Pearson; Gary F. Peter; Hector Quemada; Armand Séguin; Kylie Tattersall; Eugênio César Ulian; Christian Walter; Morven A. McLean

Forests are vital to the worlds ecological, social, cultural and economic well-being yet sustainable provision of goods and services from forests is increasingly challenged by pressures such as growing demand for wood and other forest products, land conversion and degradation, and climate change. Intensively managed, highly productive forestry incorporating the most advanced methods for tree breeding, including the application of genetic engineering (GE), has tremendous potential for producing more wood on less land. However, the deployment of GE trees in plantation forests is a controversial topic and concerns have been particularly expressed about potential harms to the environment. This paper, prepared by an international group of experts in silviculture, forest tree breeding, forest biotechnology and environmental risk assessment (ERA) that met in April 2012, examines how the ERA paradigm used for GE crop plants may be applied to GE trees for use in plantation forests. It emphasizes the importance of differentiating between ERA for confined field trials of GE trees, and ERA for unconfined or commercial-scale releases. In the case of the latter, particular attention is paid to characteristics of forest trees that distinguish them from shorter-lived plant species, the temporal and spatial scale of forests, and the biodiversity of the plantation forest as a receiving environment.


Journal of Agricultural and Food Chemistry | 2008

Individual detection of genetically modified maize varieties in non-identity-preserved maize samples.

Hiroshi Akiyama; Kozue Sakata; Kazunari Kondo; Asako Tanaka; Ming S. Liu; Taichi Oguchi; Satoshi Furui; Kazumi Kitta; Akihiro Hino; Reiko Teshima

In many countries, the labeling of grains and feed- and foodstuffs is mandatory if the genetically modified organism (GMO) content exceeds a certain level of approved GM varieties. The GMO content in a maize sample containing the combined-trait (stacked) GM maize as determined by the currently available methodology is likely to be overestimated. However, there has been little information in the literature on the mixing level and varieties of stacked GM maize in real sample grains. For the first time, the GMO content of non-identity-preserved (non-IP) maize samples imported from the United States has been successfully determined by using a previously developed individual kernel detection system coupled to a multiplex qualitative PCR method followed by multichannel capillary gel electrophoresis system analysis. To clarify the GMO content in the maize samples imported from the United States, determine how many stacked GM traits are contained therein, and which GM trait varieties frequently appeared in 2005, the GMO content (percent) on a kernel basis and the varieties of the GM kernels in the non-IP maize samples imported from the United States were investigated using the individual kernel analysis system. The average (+/-standard deviation) of the GMO contents on a kernel basis in five non-IP sample lots was determined to be 51.0+/-21.6%, the percentage of a single GM trait grains was 39%, and the percentage of the stacked GM trait grains was 12%. The MON810 grains and NK603 grains were the most frequent varieties in the single GM traits. The most frequent stacked GM traits were the MON810xNK603 grains. In addition, the present study would provide the answer and impact for the quantification of GM maize content in the GM maize kernels on labeling regulation.


The Plant Cell | 2015

The Birth of a Black Rice Gene and Its Local Spread by Introgression.

Tetsuo Oikawa; Hiroaki Maeda; Taichi Oguchi; Takuya Yamaguchi; Noriko Tanabe; Kaworu Ebana; Masahiro Yano; Takeshi Ebitani; Takeshi Izawa

The historical DNA changes that created the black rice trait and its local spread into rice subspecies involved rearrangement in the promoter region of Kala4 and subsequent introgression events. The origin and spread of novel agronomic traits during crop domestication are complex events in plant evolution. Wild rice (Oryza rufipogon) has red grains due to the accumulation of proanthocyanidins, whereas most cultivated rice (Oryza sativa) varieties have white grains induced by a defective allele in the Rc basic helix-loop-helix (bHLH) gene. Although the events surrounding the origin and spread of black rice traits remain unknown, varieties with black grains due to anthocyanin accumulation are distributed in various locations throughout Asia. Here, we show that the black grain trait originated from ectopic expression of the Kala4 bHLH gene due to rearrangement in the promoter region. Both the Rc and Kala4 genes activate upstream flavonol biosynthesis genes, such as chalcone synthase and dihydroflavonol-4-reductase, and downstream genes, such as leucoanthocyanidin reductase and leucoanthocyanidin dioxygenase, to produce the respective specific pigments. Genome analysis of 21 black rice varieties as well as red- and white-grained landraces demonstrated that black rice arose in tropical japonica and its subsequent spread to the indica subspecies can be attributed to the causal alleles of Kala4. The relatively small size of genomic fragments of tropical japonica origin in some indica varieties indicates that refined introgression must have occurred by natural crossbreeding in the course of evolution of the black trait in rice.


Journal of Agricultural and Food Chemistry | 2009

Simultaneous Detection of Recombinant DNA Segments Introduced into Genetically Modified Crops with Multiplex Ligase Chain Reaction Coupled with Multiplex Polymerase Chain Reaction

Junichi Mano; Taichi Oguchi; Hiroshi Akiyama; Reiko Teshima; Akihiro Hino; Satoshi Furui; Kazumi Kitta

We developed a multiplex polymerase chain reaction (PCR)-multiplex ligase chain reaction (LCR) (MPCR-MLCR) technique as a novel approach for the simultaneous detection of recombinant DNA segments (e.g., promoters, trait genes, and terminators) of genetically modified (GM) crops. With this technique, target DNA regions were amplified by multiplex PCR, the PCR products were then subjected to multiplex LCR as template DNAs, and the LCR products were then analyzed by polyacrylamide gel electrophoresis and subsequent fluorescent scanning. Seven recombinant DNA segments commonly introduced into some GM crop lines were selected as target DNA regions. In addition, another MPCR-MLCR system for the simultaneous detection of three endogenous DNA segments was designed as a positive control test. The specificity and sensitivity of the method were examined. The method allowed us to detect GM crops comprehensively and is expected to be utilized for efficient screening of GM crops into which any one of the seven recombinant DNA segments have been introduced, and for profiling the segments.


Journal of Bioscience and Bioengineering | 2013

Application of fungal laccase fused with cellulose-binding domain to develop low-lignin rice plants.

Toru Furukawa; Chiho Sawaguchi; Aiko Watanabe; Maki Takahashi; Mutsumi Nigorikawa; Kayoko Furukawa; Yosuke Iimura; Shinya Kajita; Taichi Oguchi; Yukihiro Ito; Tomonori Sonoki

We observed a reduction of lignin content linked to the expression of fungal laccase in rice plants. The lignin content of L-4, which showed the highest LAC activity among transgenic lines produced, was lower than that of the control line. However, this change was not reflected to the saccharification efficiency.


Transgenic Research | 2014

A multi-year assessment of the environmental impact of transgenic Eucalyptus trees harboring a bacterial choline oxidase gene on biomass, precinct vegetation and the microbial community.

Taichi Oguchi; Yuko Kashimura; Makiko Mimura; Xiang Yu; Etsuko Matsunaga; Kazuya Nanto; Teruhisa Shimada; Akira Kikuchi; Kazuo N. Watanabe

A 4-year field trial for the salt tolerant Eucalyptus globulus Labill. harboring the choline oxidase (codA) gene derived from the halobacterium Arthrobacter globiformis was conducted to assess the impact of transgenic versus non-transgenic trees on biomass production, the adjacent soil microbial communities and vegetation by monitoring growth parameters, seasonal changes in soil microbes and the allelopathic activity of leaves. Three independently-derived lines of transgenic E. globulus were compared with three independent non-transgenic lines including two elite clones. No significant differences in biomass production were detected between transgenic lines and non-transgenic controls derived from same seed bulk, while differences were seen compared to two elite clones. Significant differences in the number of soil microbes present were also detected at different sampling times but not between transgenic and non-transgenic lines. The allelopathic activity of leaves from both transgenic and non-transgenic lines also varied significantly with sampling time, but the allelopathic activity of leaves from transgenic lines did not differ significantly from those from non-transgenic lines. These results indicate that, for the observed variables, the impact on the environment of codA-transgenic E. globulus did not differ significantly from that of the non-transformed controls on this field trial.


Plant Biotechnology Journal | 2018

Development and evaluation of novel salt-tolerant Eucalyptus trees by molecular breeding using an RNA-Binding-Protein gene derived from common ice plant (Mesembryanthemum crystallinum L.)

Ngoc-Ha Thi Tran; Taichi Oguchi; Nobuhumi Akatsuka; Etsuko Matsunaga; Akiyoshi Kawaoka; Akiyo Yamada; Yoshihiro Ozeki; Kazuo N. Watanabe; Akira Kikuchi

Summary The breeding of plantation forestry trees for the possible afforestation of marginal land would be one approach to addressing global warming issues. Here, we developed novel transgenic Eucalyptus trees (Eucalyptus camaldulensis Dehnh.) harbouring an RNA‐Binding‐Protein (McRBP) gene derived from a halophyte plant, common ice plant (Mesembryanthemum crystallinum L.). We conducted screened‐house trials of the transgenic Eucalyptus using two different stringency salinity stress conditions to evaluate the plants’ acute and chronic salt stress tolerances. Treatment with 400 mM NaCl, as the high‐stringency salinity stress, resulted in soil electrical conductivity (EC) levels >20 mS/cm within 4 weeks. With the 400 mM NaCl treatment, >70% of the transgenic plants were intact, whereas >40% of the non‐transgenic plants were withered. Treatment with 70 mM NaCl, as the moderate‐stringency salinity stress, resulted in soil EC levels of approx. 9 mS/cm after 2 months, and these salinity levels were maintained for the next 4 months. All plants regardless of transgenic or non‐transgenic status survived the 70 mM NaCl treatment, but after 6‐month treatment the transgenic plants showed significantly higher growth and quantum yield of photosynthesis levels compared to the non‐transgenic plants. In addition, the salt accumulation in the leaves of the transgenic plants was 30% lower than that of non‐transgenic plants after 15‐week moderate salt stress treatment. There results suggest that McRBP expression in the transgenic Eucalyptus enhances their salt tolerance both acutely and chronically.


Transgenic Research | 2017

Expression of a fungal laccase fused with a bacterial cellulose-binding module improves the enzymatic saccharification efficiency of lignocellulose biomass in transgenic Arabidopsis thaliana

Ryota Iiyoshi; Taichi Oguchi; Toru Furukawa; Yosuke Iimura; Yukihiro Ito; Tomonori Sonoki

Delignification is effective for improving the saccharification efficiency of lignocellulosic biomass materials. We previously identified that the expression of a fungal laccase (Lac) fused with a bacterial cellulose-binding module domain (CBD) improved the enzymatic saccharification efficiency of rice plants. In this work, to evaluate the ability of the Lac-CBD fused chimeric enzyme to improve saccharification efficiency in a dicot plant, we introduced the chimeric gene into a dicot model plant, Arabidopsis thaliana. Transgenic plants expressing the Lac-CBD chimeric gene showed normal morphology and growth, and showed a significant increase of enzymatic saccharification efficiency compared to control plants. The transgenic plants with the largest improvement of enzymatic saccharification efficiency also showed an increase of crystalline cellulose in their cell wall fractions. These results indicated that expression of the Lac-CBD chimeric protein in dicotyledonous plants improved the enzymatic saccharification of plant biomass by increasing the crystallinity of cellulose in the cell wall.


Journal of Agricultural and Food Chemistry | 2005

Development of a multiplex polymerase chain reaction method for simultaneous detection of eight events of genetically modified maize.

Mari Onishi; Takeshi Matsuoka; Takashi Kodama; Koichi Kashiwaba; Satoshi Futo; Hiroshi Akiyama; Tamio Maitani; Satoshi Furui; Taichi Oguchi; Akihiro Hino

Collaboration


Dive into the Taichi Oguchi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kazumi Kitta

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar

Satoshi Furui

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akihiro Hino

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Junichi Mano

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge