Taifo Mahmud
Oregon State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Taifo Mahmud.
Nature Biotechnology | 2007
Susanne Schneiker; Olena Perlova; Olaf Kaiser; Klaus Gerth; Aysel Alici; Matthias O. Altmeyer; Daniela Bartels; Thomas Bekel; Stefan Beyer; Edna Bode; Helge B. Bode; Christoph J. Bolten; Jomuna V. Choudhuri; Sabrina Doss; Yasser A. Elnakady; Bettina Frank; Lars Gaigalat; Alexander Goesmann; Carolin Groeger; Frank Gross; Lars Jelsbak; Lotte Jelsbak; Jörn Kalinowski; Carsten Kegler; Tina Knauber; Sebastian Konietzny; Maren Kopp; Lutz Krause; Daniel Krug; Bukhard Linke
The genus Sorangium synthesizes approximately half of the secondary metabolites isolated from myxobacteria, including the anti-cancer metabolite epothilone. We report the complete genome sequence of the model Sorangium strain S. cellulosum So ce56, which produces several natural products and has morphological and physiological properties typical of the genus. The circular genome, comprising 13,033,779 base pairs, is the largest bacterial genome sequenced to date. No global synteny with the genome of Myxococcus xanthus is apparent, revealing an unanticipated level of divergence between these myxobacteria. A large percentage of the genome is devoted to regulation, particularly post-translational phosphorylation, which probably supports the strains complex, social lifestyle. This regulatory network includes the highest number of eukaryotic protein kinase–like kinases discovered in any organism. Seventeen secondary metabolite loci are encoded in the genome, as well as many enzymes with potential utility in industry.
Natural Product Reports | 2003
Taifo Mahmud
This review covers microbial secondary metabolites classified in the family of C7N aminocyclitols, a relatively new class of natural products that is increasingly gaining recognition due to their significant biomedical and agricultural uses. Their discovery and structure determinations, their biosynthetic origin, biological properties, chemical synthesis, as well as their further development for pharmaceutical uses are described. The literature from 1970 to July 2002 is reviewed, with 269 references cited.
Natural Product Reports | 2007
Patricia M. Flatt; Taifo Mahmud
This review covers the biosynthesis of aminocyclitol-aminoglycoside antibiotics and related compounds, particularly from the molecular genetic perspectives. 195 references are cited.
Applied and Environmental Microbiology | 2005
Yi Yu; Linquan Bai; Kazuyuki Minagawa; Xiaohong Jian; Lei Li; Jialiang Li; Shuangya Chen; Erhu Cao; Taifo Mahmud; Heinz G. Floss; Xiufen Zhou; Zixin Deng
ABSTRACT A gene cluster responsible for the biosynthesis of validamycin, an aminocyclitol antibiotic widely used as a control agent for sheath blight disease of rice plants, was identified from Streptomyces hygroscopicus subsp. jinggangensis 5008 using heterologous probe acbC, a gene involved in the cyclization of d-sedoheptulose 7-phosphate to 2-epi-5-epi-valiolone of the acarbose biosynthetic gene cluster originated from Actinoplanes sp. strain SE50/110. Deletion of a 30-kb DNA fragment from this cluster in the chromosome resulted in loss of validamycin production, confirming a direct involvement of the gene cluster in the biosynthesis of this important plant protectant. A sequenced 6-kb fragment contained valA (an acbC homologue encoding a putative cyclase) as well as two additional complete open reading frames (valB and valC, encoding a putative adenyltransferase and a kinase, respectively), which are organized as an operon. The function of ValA was genetically demonstrated to be essential for validamycin production and biochemically shown to be responsible specifically for the cyclization of d-sedoheptulose 7-phosphate to 2-epi-5-epi-valiolone in vitro using the ValA protein heterologously overexpressed in E. coli. The information obtained should pave the way for further detailed analysis of the complete biosynthetic pathway, which would lead to a complete understanding of validamycin biosynthesis.
Journal of Biological Chemistry | 1999
Ansgar Stratmann; Taifo Mahmud; Sungsook Lee; Juergen Dr Distler; Heinz G. Floss; Wolfgang Piepersberg
The putative biosynthetic gene cluster for the α-glucosidase inhibitor acarbose was identified in the producerActinoplanes sp. 50/110 by cloning a DNA segment containing the conserved gene for dTDP-d-glucose 4,6-dehydratase,acbB. The two flanking genes were acbA(dTDP-d-glucose synthase) and acbC, encoding a protein with significant similarity to 3-dehydroquinate synthases (AroB proteins). The acbC gene was overexpressed heterologously in Streptomyces lividans 66, and the product was shown to be a C7-cyclitol synthase using sedo-heptulose 7-phosphate, but not ido-heptulose 7-phosphate, as its substrate. The cyclization product, 2-epi-5-epi-valiolone ((2S,3S,4S,5R)-5-(hydroxymethyl)cyclohexanon-2,3,4,5-tetrol), is a precursor of the valienamine moiety of acarbose. A possible five-step reaction mechanism is proposed for the cyclization reaction catalyzed by AcbC based on the recent analysis of the three-dimensional structure of a eukaryotic 3-dehydroquinate synthase domain (Carpenter, E. P., Hawkins, A. R., Frost, J. W., and Brown, K. A. (1998) Nature 394, 299–302).
ChemBioChem | 2009
Takuya Ito; Niran Roongsawang; Norifumi Shirasaka; Wanli Lu; Patricia M. Flatt; Noer Kasanah; Cristobal L. Miranda; Taifo Mahmud
Pactamycin is an aminocyclopentitol‐derived natural product that has potent antibacterial and antitumor activities. Sequence analysis of an 86 kb continuous region of the chromosome from Streptomyces pactum ATCC 27456 revealed a gene cluster involved in the biosynthesis of pactamycin. Gene inactivation of the Fe‐S radical SAM oxidoreductase (ptmC) and the glycosyltransferase (ptmJ), individually abrogated pactamycin biosynthesis; this confirmed the involvement of the ptm gene cluster in pactamycin biosynthesis. The polyketide synthase gene (ptmQ) was found to support 6‐methylsalicylic acid (6‐MSA) synthesis in a heterologous host, S. lividans T7. In vivo inactivation of ptmQ in S. pactum impaired pactamycin and pactamycate production but led to production of two new pactamycin analogues, de‐6‐MSA‐pactamycin and de‐6‐MSA‐pactamycate. The new compounds showed equivalent cytotoxic and antibacterial activities with the corresponding parent molecules and shed more light on the structure–activity relationship of pactamycin.
Journal of Biological Chemistry | 2002
Taifo Mahmud; Helge B. Bode; Barbara Silakowski; Reiner M. Kroppenstedt; Mingjie Xu; Sonja Nordhoff; Gerhard Höfle; Rolf Müller
Short chain carboxylic acids are well known as the precursors of fatty acid and polyketide biosynthesis. Iso-fatty acids, which are important for the control of membrane fluidity, are formed from branched chain starter units (isovaleryl-CoA and isobutyryl-CoA), which in turn are derived from the degradation of leucine and valine, respectively. Branched chain carboxylic acids are also employed as starter molecules for the biosynthesis of secondary metabolites, e.g. the therapeutically important anthelmintic agent avermectin or the electron transport inhibitor myxothiazol. During our studies on myxothiazol biosynthesis in the myxobacterium, Stigmatella aurantiaca, we detected a novel biosynthetic route to isovaleric acid. After cloning and inactivation of the branched chain keto acid dehydrogenase complex, which is responsible for the degradation of branched chain amino acids, the strain is still able to produce iso-fatty acids and myxothiazol. Incorporation studies employing deuterated leucine show that it can only serve as precursor in the wild type strain but not in theesg mutant. Feeding experiments using13C-labeled precursors show that isovalerate is efficiently made from acetate, giving rise to a labeling pattern in myxothiazol that provides evidence for a novel branch of the mevalonate pathway involving the intermediate 3,3-dimethylacryloyl-CoA. 3,3-Dimethylacrylic acid was synthesized in deuterated form and fed to the esg mutant, resulting in strong incorporation into myxothiazol and iso-fatty acids. Similar experiments employingMyxococcus xanthus revealed that the discovered biosynthetic route described is present in other myxobacteria as well.
Journal of the American Chemical Society | 2010
Micheal C. Wilson; Tobias A. M. Gulder; Taifo Mahmud; Bradley S. Moore
Saliniketals A and B are unusual polyketides from the marine actinomycete Salinispora arenicola that inhibit ornithine decarboxylase induction. The structural similarities between the saliniketals and the ansa chain of the potent rifamycin antibiotics, which co-occur in the fermentation broth, suggest a common origin between the two compound classes. Using PCR-directed mutagenesis, chemical complementation studies, and stable isotope feeding experiments, we showed that the saliniketals are byproducts of the rifamycin biosynthetic pathway diverging at the stage of 34a-deoxyrifamycin W. Our results suggest that a single enzyme, the cytochrome P450 monooxygenase encoded by sare1259, catalyzes multiple oxidative rearrangement reactions on 34a-deoxyrifamyin W to yield both the saliniketal and rifamycin structural classes.
Chemistry & Biology | 2011
Wanli Lu; Niran Roongsawang; Taifo Mahmud
Pactamycin, one of the most densely functionalized aminocyclitol antibiotics, has pronounced antibacterial, antitumor, antiviral, and antiplasmodial activities, but its development as a clinical drug was hampered by its broad cytotoxicity. Efforts to modulate the biological activity by structural modifications using synthetic organic chemistry have been difficult because of the complexity of its chemical structure. However, through extensive biosynthetic studies and genetic engineering, we were able to produce analogs of pactamycin that show potent antimalarial activity, but lack significant antibacterial activity, and are about 10-30 times less toxic than pactamycin toward mammalian cells. The results suggest that distinct ribosomal binding selectivity or new mechanism(s) of action may be involved in their plasmodial growth inhibition, which may lead to the discovery of new antimalarial drugs and identification of new molecular targets within malarial parasites.
ChemBioChem | 2007
Xiumei Wu; Patricia M. Flatt; Oliver Schlörke; Axel Zeeck; Tohru Dairi; Taifo Mahmud
Sugar phosphate cyclases (SPCs) catalyze the cyclization of sugar phosphates to produce a variety of cyclitol intermediates that serve as the building blocks of many primary metabolites, for example, aromatic amino acids, and clinically relevant secondary metabolites, for example, aminocyclitol/aminoglycoside and ansamycin antibiotics. Feeding experiments with isotopically labeled cyclitols revealed that cetoniacytone A, a unique C7N‐aminocyclitol antibiotic isolated from an insect endophytic Actinomyces sp., is derived from 2‐epi‐5‐epi‐valiolone, a product of SPC. By using heterologous probes from the 2‐epi‐5‐epi‐valiolone synthase class of SPCs, an SPC homologue gene, cetA, was isolated from the cetoniacytone producer. cetA is closely related to BE‐orf9 found in the BE‐40644 biosynthetic gene cluster from Actinoplanes sp. strain A40644. Recombinant expression of cetA and BE‐orf9 and biochemical characterization of the gene products confirmed their function as 2‐epi‐5‐epi‐valiolone synthases. Further phylogenetic analysis of SPC sequences revealed a new clade of SPCs that might regulate the biosynthesis of a novel set of secondary metabolites.