Taihei Ninomiya
Primate Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Taihei Ninomiya.
The Journal of Neuroscience | 2010
Yoko Fujiwara-Tsukamoto; Yoshikazu Isomura; Michiko Imanishi; Taihei Ninomiya; Minoru Tsukada; Yuchio Yanagawa; Tomoki Fukai; Masahiko Takada
A variety of epileptic seizure models have shown that activation of glutamatergic pyramidal cells is usually required for rhythm generation and/or synchronization in hippocampal seizure-like oscillations in vitro. However, it still remains unclear whether GABAergic interneurons may be able to drive the seizure-like oscillations without glutamatergic transmission. Here, we found that electrical stimulation in rat hippocampal CA1 slices induced a putative prototype of seizure-like oscillations (“prototypic afterdischarge,” 1.8–3.8 Hz) in mature pyramidal cells and interneurons in the presence of ionotropic glutamate receptor antagonists. The prototypic afterdischarge was abolished by GABAA receptor antagonists or gap junction blockers, but not by a metabotropic glutamate receptor antagonist or a GABAB receptor antagonist. Gramicidin-perforated patch-clamp and voltage-clamp recordings revealed that pyramidal cells were depolarized and frequently excited directly through excitatory GABAergic transmissions in each cycle of the prototypic afterdischarge. Interneurons that were actively spiking during the prototypic afterdischarge were mostly fast-spiking (FS) interneurons located in the strata oriens and pyramidale. Morphologically, these interneurons that might be “potential seizure drivers” included basket, chandelier, and bistratified cells. Furthermore, they received direct excitatory GABAergic input during the prototypic afterdischarge. The O-LM cells and most of the interneurons in the strata radiatum and lacunosum moleculare were not essential for the generation of prototypic afterdischarge. The GABA-mediated prototypic afterdischarge was observed later than the third postnatal week in the rat hippocampus. Our results suggest that an FS interneuron network alone can drive the prototypic form of electrically induced seizure-like oscillations through their excitatory GABAergic transmissions and presumably through gap junction-mediated communications.
The Journal of Neuroscience | 2012
Taihei Ninomiya; Hiromasa Sawamura; Kenichi Inoue; Masahiko Takada
The bottom-up processing of visual information is strongly influenced by top-down signals, at least part of which is thought to be conveyed from the frontal cortex through the frontal eye field (FEF) and the lateral intraparietal area (LIP). Here we investigated the architecture of multisynaptic pathways from the frontal cortex to the middle temporal area (MT) of the dorsal visual stream and visual area 4 (V4) of the ventral visual stream in macaques. In the first series of experiments, the retrograde trans-synaptic tracer, rabies virus, was injected into MT or V4. Three days after rabies injections, the second-order (disynaptically connected) neuron labeling appeared in the ventral part of area 46 (area 46v), along with the first-order (monosynaptically connected) neuron labeling in FEF and LIP. In the MT-injection case, second-order neurons were also observed in the supplementary eye field (SEF). In the next series of experiments, double injections of two fluorescent dyes, fast blue and diamidino yellow, were made into MT and V4 to examine whether the frontal inputs are mediated by distinct or common neuronal populations. Virtually no double-labeled neurons were observed in FEF or LIP, indicating that separate neuronal populations mediate the frontal inputs to MT and V4. The present results define that the multisynaptic frontal input to V4 arises primarily from area 46v, whereas the input to MT arises from not only area 46v but also SEF, through distinct FEF and LIP neurons. Segregated pathways from the frontal cortex possibly carry the functionally diverse top-down signals to each visual stream.
Neuron | 2016
Kevin W. McCairn; Yuji Nagai; Yukiko Hori; Taihei Ninomiya; Erika Kikuchi; Ju-Young Lee; Tetsuya Suhara; Atsushi Iriki; Takafumi Minamimoto; Masahiko Takada; Masaki Isoda; Masayuki Matsumoto
Inappropriate vocal expressions, e.g., vocal tics in Tourette syndrome, severely impact quality of life. Neural mechanisms underlying vocal tics remain unexplored because no established animal model representing the condition exists. We report that unilateral disinhibition of the nucleus accumbens (NAc) generates vocal tics in monkeys. Whole-brain PET imaging identified prominent, bilateral limbic cortico-subcortical activation. Local field potentials (LFPs) developed abnormal spikes in the NAc and the anterior cingulate cortex (ACC). Vocalization could occur without obvious LFP spikes, however, when phase-phase coupling of alpha oscillations were accentuated between the NAc, ACC, and the primary motor cortex. These findings contrasted with myoclonic motor tics induced by disinhibition of the dorsolateral putamen, where PET activity was confined to the ipsilateral sensorimotor system and LFP spikes always preceded motor tics. We propose that vocal tics emerge as a consequence of dysrhythmic alpha coupling between critical nodes in the limbic and motor networks. VIDEO ABSTRACT.
Journal of Neurophysiology | 2015
Taihei Ninomiya; Kacie Dougherty; David C. Godlove; Jeffrey D. Schall; Alexander Maier
Neocortex is striking in its laminar architecture. Tracer studies have uncovered anatomical connectivity among laminae, but the functional connectivity between laminar compartments is still largely unknown. Such functional connectivity can be discerned through spontaneous neural correlations during rest. Previous work demonstrated a robust pattern of mesoscopic resting-state connectivity in macaque primary visual cortex (V1) through interlaminar cross-frequency coupling. Here we investigated whether this pattern generalizes to other cortical areas by comparing resting-state laminar connectivity between V1 and the supplementary eye field (SEF), a frontal area lacking a granular layer 4 (L4). Local field potentials (LFPs) were recorded with linear microelectrode arrays from all laminae of granular V1 and agranular SEF while monkeys rested in darkness. We found substantial differences in the relationship between the amplitude of gamma-band (>30 Hz) LFP and the phase of alpha-band (7-14 Hz) LFP between these areas. In V1, gamma amplitudes in L2/3 and L5 were coupled with alpha-band LFP phase in L5, as previously described. In contrast, in SEF phase-amplitude coupling was prominent within L3 and much weaker across layers. These results suggest that laminar interactions in agranular SEF are unlike those in granular V1. Thus the intrinsic functional connectivity of the cortical microcircuit does not seem to generalize across cortical areas.
Cerebral Cortex | 2015
Kacie Dougherty; Michele A Cox; Taihei Ninomiya; David A. Leopold; Alexander Maier
Abstract The interlaminar connections in the primate primary visual cortex (V1) are well described, as is the presence of ongoing alpha‐range (7‐14 Hz) fluctuations in this area. Less well understood is how these interlaminar connections and ongoing fluctuations contribute to the regulation of visual spiking responses. Here, we investigate the relationship between alpha fluctuations and spiking responses to visual stimuli across cortical layers. Using laminar probes in macaque V1, we show that neural firing couples with the phase of alpha fluctuations, and that magnitude of this coupling is particularly pronounced during visual stimulation. The strongest modulation of spiking activity was observed in layers 2/3. Alpha‐spike coupling and current source density analysis pointed to an infragranular origin of the alpha fluctuations. Taken together, these results indicate that ongoing infragranular alpha‐range fluctuations in V1 play a role in regulating columnar visual activity.
British Journal of Ophthalmology | 2012
Mari Hiraoka; Kenichi Inoue; Taihei Ninomiya; Masahiko Takada
Aims To elucidate the morphological features of optic neuropathy in an ischaemic model of glaucoma in macaque monkeys. Methods The regional degenerative process was investigated by experimentally occluding the paraoptic branches of the lateral short posterior ciliary artery, that is, the circle of Haller and Zinn, in 11 eyes. Morphological changes in nerve fibres in the lamina cribrosa were evaluated by histopathology, immunocytochemistry and angiography, and the findings were compared with those observed in an aged macaque with spontaneous glaucomatous optic neuropathy. Results Retinal ganglion cell axons were grouped in bundles and traversed through pores in columns of the lamina cribrosa. The processes of astrocytes extended to the bundles, and capillaries branched in surrounding connective tissue from the circular arterioles. Experimental ischaemia induced time-dependent anoxic deterioration of phosphorylated fibres in the temporal arcuate zone, accompanied by glial proliferation. A monkey with spontaneous visual impairment had nerve fibre loss and gliosis with collagenous proliferation in the temporal hemisphere, suggesting glaucomatous neuropathy. Conclusions Circulatory interference in the circle of Haller and Zinn caused time-dependent deterioration in the area where anoxic segmental degeneration is associated with pathogenesis of open-angle glaucoma.
Scientific Reports | 2015
Hiroshi Nakagawa; Taihei Ninomiya; Toshihide Yamashita; Masahiko Takada
Previous studies have shown that sprouting of corticospinal tract (CST) fibers after spinal cord injury (SCI) contributes to recovery of motor functions. However, the neuroanatomical mechanism underlying the functional recovery through sprouting CST fibers remains unclear. Here we investigated the pattern of reorganization of CST fibers below the lesion site after SCI in adult macaques. Unilateral lesions were made at the level between the C7 and the C8 segment. The extent of spontaneous recovery of manual dexterity was assessed with a reaching/grasping task. The impaired dexterous manual movements were gradually recovered after SCI. When anterograde tract tracing with biotinylated dextran amine was performed to identify the intraspinal reinnervation of sprouting CST fibers, it was found that the laminar distribution of CST fibers was changed. The sprouting CST fibers extended preferentially into lamia IX where the spinal motor neuron pool was located, to innervate the motor neurons directly. Instead, few, if any, CST fibers were distributed in the dorsal laminae. The present results indicate that CST fibers below the lesion site after SCI in macaques are reorganized in conjunction with the recovery of dexterous manual movements.
Journal of Neurophysiology | 2012
Taihei Ninomiya; Takahisa M. Sanada; Izumi Ohzawa
Neurons in the early visual cortex are generally highly sensitive to stimuli presented to the two eyes. However, the majority of studies on spatial and temporal aspects of neural responses were based on monocular measurements. To study neurons under more natural, i.e., binocular, conditions, we presented sinusoidal gratings of a variety of spatial frequencies (SF) dichoptically in rapid sequential flashes and analyzed the data using a binocular reverse correlation technique for neurons in cat area 17. The resulting set of data represents a frequency-domain binocular receptive field from which detailed selectivities, both monocular and binocular, could be obtained. Consistent with previous studies, the responses could generally be explained by linear summation of inputs from the two eyes. Suppressive responses were also observed and were delayed typically by 5-15 ms relative to excitatory responses. However, we have found more diverse nature of suppressive responses than those reported previously. The optimal suppressive frequency could be either higher or lower than that of the excitatory responses. The bandwidth of SF tuning of the suppressive responses was usually broader than that of the excitatory responses. Cells with lower optimal SFs for suppression tended to show high optimal SFs and sharp tuning curves. The dynamic shift of optimal SF from low to high SF was accompanied by suppression with earlier onset and higher peak SF or later onset and lower peak SF than excitation. These results suggest that the suppression plays an essential role in generating the temporal dynamics of SF selectivity.
PLOS ONE | 2012
Taihei Ninomiya; Hiromasa Sawamura; Kenichi Inoue; Masahiko Takada
Retrograde transsynaptic transport of rabies virus was employed to undertake the top-down projections from the medial temporal lobe (MTL) to visual area V4 of the occipitotemporal visual pathway in Japanese monkeys (Macaca fuscata). On day 3 after rabies injections into V4, neuronal labeling was observed prominently in the temporal lobe areas that have direct connections with V4, including area TF of the parahippocampal cortex. Furthermore, conspicuous neuron labeling appeared disynaptically in area TH of the parahippocampal cortex, and areas 35 and 36 of the perirhinal cortex. The labeled neurons were located predominantly in deep layers. On day 4 after the rabies injections, labeled neurons were found in the hippocampal formation, along with massive labeling in the parahippocampal and perirhinal cortices. In the hippocampal formation, the densest neuron labeling was seen in layer 5 of the entorhinal cortex, and a small but certain number of neurons were labeled in other regions, such as the subicular complex and CA1 and CA3 of the hippocampus proper. The present results indicate that V4 receives major input from the hippocampus proper via the entorhinal cortex, as well as “short-cut” pathways that bypass the entorhinal cortex. These multisynaptic pathways may define an anatomical basis for hippocampal-cortical interactions involving lower visual areas. The multisynaptic input from the MTL to V4 is likely to provide mnemonic information about object recognition that is accomplished through the occipitotemporal pathway.
Cerebral Cortex | 2013
Yoshihiro Hirata; Shigehiro Miyachi; Kenichi Inoue; Taihei Ninomiya; Daisuke Takahara; Eiji Hoshi; Masahiko Takada
The medial temporal lobe (MTL) is responsible for various mnemonic functions, such as association/conjunction memory. The lateral prefrontal cortex (LPFC) also plays crucial roles in mnemonic functions and memory-based cognitive behaviors, for example, decision-making. Therefore, it is considered that the MTL and LPFC connect with each other and cooperate for the control of cognitive behaviors. However, there exist very weak, if any, direct inputs from the MTL to the LPFC. Employing retrograde transsynaptic transport of rabies virus, we investigated the organization of disynaptic bottom-up pathways connecting the MTL and the inferotemporal cortex to the LPFC in macaques. Three days after rabies injections into dorsal area 46, a large number of labeled neurons were observed in the MTL, such as the hippocampal formation (including the entorhinal cortex), the perirhinal cortex, and the parahippocampal cortex. In contrast, a majority of the labeled neurons were located in the inferotemporal cortex following rabies injections into ventral area 46 and lateral area 12. Rabies injections into lateral area 9/area 8B labeled only a small number of neurons in the MTL and the inferotemporal cortex. The present results indicate that, among the LPFC, dorsal area 46 is the main target of disynaptic inputs from the MTL.