Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Taija Finni is active.

Publication


Featured researches published by Taija Finni.


European Journal of Applied Physiology | 1998

Achilles tendon loading during walking: application of a novel optic fiber technique.

Taija Finni; Paavo V. Komi; J. Lukkariniemi

Abstract An optic fiber (Ø 0.5 mm) was utilized for the study of Achilles tendon forces (ATF) in eight volunteers who walked over a 10 m force platform at three speeds (1.1 ± 0.1 m × s−1, 1.5 ± 0.1 m × s−1 and 1.8 ± 0.2 m × s−1). The presented ATF-time curves showed great intersubject variation in magnitudes of the sudden release of force after initial contact and in the peak ATFs (1430 ± 500 N). This intersubject variation in the peak force decreased only by 4% when cross-sectional area of the tendon was considered. Measured ground reaction forces and plantar pressures confirmed that the subjects walked quite normally during recordings. The peak ATF was found to be rather insensitive to speed in contrast to the rate of ATF development which increased 32% ( p < 0.5) from slow to fast walking speed. It is concluded that the optic fiber technique can be applied to study loading of the musculo-tendinous complex during normal locomotion such as walking.


European Journal of Applied Physiology | 2000

In vivo human triceps surae and quadriceps femoris muscle function in a squat jump and counter movement jump

Taija Finni; Paavo V. Komi; Vesa Lepola

Abstract An optic fibre method was used to measure in humans in vivo Achilles (ATF) and patellar tendon forces (PTF) during submaximal squat jumps (SJ) and counter movement jumps (CMJ). Normal two-legged jumps on a force plate and one-legged jumps on a sledge apparatus were made by four volunteers. Kinetics, kinematics, and muscle activity from seven muscles were recorded. The loading patterns of the tendomuscular system differed among the jumping conditions, but were similar when the jumping height was varied. Peak PTF were greater than ATF in each condition. In contrast to earlier simulation studies it was observed that tendomuscular force could continue to increase during the shortening of muscle-tendon unit in CMJ. The concentric tendomuscular output was related to the force at the end of the stretching phase while the enhancement of the output in CMJ compared to SJ could not be explained by increases in muscle activity. The stretching phase in CMJ was characterised by little or no electromyogram activity. Therefore, the role of active stretch in creating beneficial conditions for the utilisation of elastic energy in muscle was only minor in these submaximal performances. The modelling, as used in the present study, showed, however, that tendon underwent a stretch-shortening cycle, thus having potential for elastic energy storage and utilisation. In general, the interaction between muscle and tendon components may be organised in a manner that takes advantage of the basic properties of muscle at given submaximal and variable activity levels of normal human locomotion.


Journal of Applied Physiology | 2012

Age-related differences in Achilles tendon properties and triceps surae muscle architecture in vivo

Lauri Stenroth; Jussi Peltonen; Neil J. Cronin; Sarianna Sipilä; Taija Finni

This study examined the concurrent age-related differences in muscle and tendon structure and properties. Achilles tendon morphology and mechanical properties and triceps surae muscle architecture were measured from 100 subjects [33 young (24 ± 2 yr) and 67 old (75 ± 3 yr)]. Motion analysis-assisted ultrasonography was used to determine tendon stiffness, Youngs modulus, and hysteresis during isometric ramp contractions. Ultrasonography was used to measure muscle architectural features and size and tendon cross-sectional area. Older participants had 17% lower (P < 0.01) Achilles tendon stiffness and 32% lower (P < 0.001) Youngs modulus than young participants. Tendon cross-sectional area was also 16% larger (P < 0.001) in older participants. Triceps surae muscle size was smaller (P < 0.05) and gastrocnemius medialis muscle fascicle length shorter (P < 0.05) in old compared with young. Maximal plantarflexion force was associated with tendon stiffness and Youngs modulus (r = 0.580, P < 0.001 and r = 0.561, P < 0.001, respectively). Comparison between old and young subjects with similar strengths did not reveal a difference in tendon stiffness. The results suggest that regardless of age, Achilles tendon mechanical properties adapt to match the level of muscle performance. Old people may compensate for lower tendon material properties by increasing tendon cross-sectional area. Lower tendon stiffness in older subjects might be beneficial for movement economy in low-intensity locomotion and thus optimized for their daily activities.


Chronobiology International | 2007

Effect of Time‐of‐Day‐Specific Strength Training on Serum Hormone Concentrations and Isometric Strength in Men

Milan Sedliak; Taija Finni; Sulin Cheng; William J. Kraemer; Keijo Häkkinen

A time‐of‐day influence on the neuromuscular response to strength training has been previously reported. However, no scientific study has examined the influence of the time of day when strength training is performed on hormonal adaptations. Therefore, the primary purpose of this study was to examine the effects of time‐of‐day‐specific strength training on resting serum concentrations and diurnal patterns of testosterone (T) and cortisol (CORT) as well as maximum isometric strength of knee extensors. Thirty eight diurnally active healthy, previously untrained men (age 20–45 yrs) underwent a ten‐week preparatory strength training period when sessions were conducted between 17:00–19:00 h. Thereafter, these subjects were randomized into either a morning (n=20, training times 07:00–09:00 h) or afternoon (n=18, 7:00–19:00 h) training group for another ten‐week period of time‐of‐day‐specific training (TST). Isometric unilateral knee extension peak torque (MVC) was measured at 07:00, 12:00, 17:00, and 20:30 h over two consecutive days (Day 1 & Day 2) before and after TST. Blood samples were obtained before each clock‐time measurement to assess resting serum T and CORT concentrations. A matched control group (n=11) did not train but participated in the tests. Serum T and CORT concentrations significantly declined from 07:00 to 20:30 h on all test days (Time effect, p<.001). Serum CORT at 07:00 h was significantly higher on Day 1 than Day 2 in the control and afternoon group, both in Pre and Post conditions (Day×Time interaction, p<.01). In the morning group, a similar day‐to‐day difference was present in the Pre but not Post conditions (Time×Group interaction, p<.05). MVC significantly increased after TST in both the morning and afternoon groups (Pre to Post effect, p<.001). In both groups, a typical diurnal variation in MVC (Time effect, p<.001) was found, especially on Day 2 in the Pre condition, and this feature persisted from Pre to Post in the afternoon group. In the morning group, however, diurnal variation was reduced after TST on both Day 1 and Day 2 (Pre to Post×Day×Time×Group interaction, p<.05). In conclusion, 10 weeks of morning time‐of‐day‐specific strength training resulted in reduced morning resting CORT concentrations, presumably as a result of decreased masking effects of anticipatory psychological stress prior to the morning testing. The typical diurnal pattern of maximum isometric strength was blunted by the TST period in the morning but not the afternoon group. However, the TST period had no significant effect on the resting total T concentration and its diurnal pattern and on the absolute increase in maximum strength.


PLOS ONE | 2013

Muscle Activity and Inactivity Periods during Normal Daily Life

Olli Tikkanen; Piia Haakana; Arto J. Pesola; Keijo Häkkinen; Timo Rantalainen; Marko Havu; Teemu Pullinen; Taija Finni

Recent findings suggest that not only the lack of physical activity, but also prolonged times of sedentary behaviour where major locomotor muscles are inactive, significantly increase the risk of chronic diseases. The purpose of this study was to provide details of quadriceps and hamstring muscle inactivity and activity during normal daily life of ordinary people. Eighty-four volunteers (44 females, 40 males, 44.1±17.3 years, 172.3±6.1 cm, 70.1±10.2 kg) were measured during normal daily life using shorts measuring muscle electromyographic (EMG) activity (recording time 11.3±2.0 hours). EMG was normalized to isometric MVC (EMGMVC) during knee flexion and extension, and inactivity threshold of each muscle group was defined as 90% of EMG activity during standing (2.5±1.7% of EMGMVC). During normal daily life the average EMG amplitude was 4.0±2.6% and average activity burst amplitude was 5.8±3.4% of EMGMVC (mean duration of 1.4±1.4 s) which is below the EMG level required for walking (5 km/h corresponding to EMG level of about 10% of EMGMVC). Using the proposed individual inactivity threshold, thigh muscles were inactive 67.5±11.9% of the total recording time and the longest inactivity periods lasted for 13.9±7.3 min (2.5–38.3 min). Women had more activity bursts and spent more time at intensities above 40% EMGMVC than men (p<0.05). In conclusion, during normal daily life the locomotor muscles are inactive about 7.5 hours, and only a small fraction of muscles maximal voluntary activation capacity is used averaging only 4% of the maximal recruitment of the thigh muscles. Some daily non-exercise activities such as stair climbing produce much higher muscle activity levels than brisk walking, and replacing sitting by standing can considerably increase cumulative daily muscle activity.


Journal of Applied Physiology | 2010

Intermuscular force transmission between human plantarflexor muscles in vivo

Jens Bojsen-Møller; Sidse Schwartz; Kari K. Kalliokoski; Taija Finni; S. Peter Magnusson

The exact mechanical function of synergist muscles within a human limb in vivo is not well described. Recent studies indicate the existence of a mechanical interaction between muscle actuators that may have functional significance and further play a role for injury mechanisms. The purpose of the present study was to investigate if intermuscular force transmission occurs within and between human plantarflexor muscles in vivo. Seven subjects performed four types of either active contractile tasks or passive joint manipulations: passive knee extension, voluntary isometric plantarflexion, voluntary isometric hallux flexion, passive hallux extension, and selective percutaneous stimulation of the gastrocnemius medialis (MG). In each experiment plantar- and hallux flexion force and corresponding EMG activity were sampled. During all tasks ultrasonography was applied at proximal and distal sites to assess task-induced tissue displacement (which is assumed to represent loading) for the plantarflexor muscles [MG, soleus (SOL), and flexor hallucis longus (FHL)]. Selective MG stimulation and passive knee extension resulted in displacement of both the MG and SOL muscles. Minimal displacement of the triceps surae muscles was seen during passive hallux extension. Large interindividual differences with respect to deep plantarflexor activation during voluntary contractions were observed. The present results suggest that force may be transmitted between the triceps surae muscles in vivo, while only limited evidence was provided for the occurrence of force transfer between the triceps surae and the deeper-lying FHL.


Physiological Measurement | 2007

Measurement of EMG activity with textile electrodes embedded into clothing

Taija Finni; Min Hu; P Kettunen; Toivo Vilavuo; Sulin Cheng

Novel textile electrodes that can be embedded into sports clothing to measure averaged rectified electromyography (EMG) have been developed for easy use in field tests and in clinical settings. The purpose of this study was to evaluate the validity, reliability and feasibility of this new product to measure averaged rectified EMG. The validity was tested by comparing the signals from bipolar textile electrodes (42 cm(2)) and traditional bipolar surface electrodes (1.32 cm(2)) during bilateral isometric knee extension exercise with two electrode locations (A: both electrodes located in the same place, B: traditional electrodes placed on the individual muscles according to SENIAM, n=10 persons for each). Within-session repeatability (the coefficient of variation CV%, n=10) was calculated from five repetitions of 60% maximum voluntary contraction (MVC). The day-to-day repeatability (n=8) was assessed by measuring three different isometric force levels on five consecutive days. The feasibility of the textile electrodes in field conditions was assessed during a maximal treadmill test (n=28). Bland-Altman plots showed a good agreement within 2SD between the textile and traditional electrodes, demonstrating that the textile electrodes provide similar information on the EMG signal amplitude to the traditional electrodes. The within-session CV ranged from 13% to 21% in both the textile and traditional electrodes. The day-to-day CV was smaller, ranging from 4% to 11% for the textile electrodes. A similar relationship (r(2)=0.5) was found between muscle strength and the EMG of traditional and textile electrodes. The feasibility study showed that the textile electrode technique can potentially make EMG measurements very easy in field conditions. This study indicates that textile electrodes embedded into shorts is a valid and feasible method for assessing the average rectified value of EMG.


Journal of Applied Physiology | 2015

Ultrasound-based testing of tendon mechanical properties: a critical evaluation

Olivier R. Seynnes; Jens Bojsen-Møller; Kirsten Albracht; A Arndt; Neil J. Cronin; Taija Finni; S. P. Magnusson

In the past 20 years, the use of ultrasound-based methods has become a standard approach to measure tendon mechanical properties in vivo. Yet the multitude of methodological approaches adopted by various research groups probably contribute to the large variability of reported values. The technique of obtaining and relating tendon deformation to tensile force in vivo has been applied differently, depending on practical constraints or scientific points of view. Divergence can be seen in 1) methodological considerations, such as the choice of anatomical features to scan and to track, force measurements, or signal synchronization; and 2) in physiological considerations related to the viscoelastic behavior or length measurements of tendons. Hence, the purpose of the present review is to assess and discuss the physiological and technical aspects connected to in vivo testing of tendon mechanical properties. In doing so, our aim is to provide the reader with a qualitative analysis of ultrasound-based techniques. Finally, a list of recommendations is proposed for a number of selected issues.


Journal of Magnetic Resonance Imaging | 2004

Muscle kinematics during isometric contraction: development of phase contrast and spin tag techniques to study healthy and atrophied muscles.

Shantanu Sinha; John A. Hodgson; Taija Finni; Alex M. Lai; John Grinstead; V. Reggie Edgerton

To develop and compare phase‐contrast (PC) and spin‐tag (ST) MR imaging techniques for accurate quantification of velocity and displacement distribution in the muscle tendon complex of the lower leg during isometric contractions under in vivo conditions, in healthy subjects and subjects with atrophy.


The Journal of Experimental Biology | 2010

In vivo mechanical response of human Achilles tendon to a single bout of hopping exercise

Jussi Peltonen; Neil J. Cronin; Janne Avela; Taija Finni

SUMMARY Stiffness of the human Achilles tendon (AT) was determined in vivo before and after a single bout of hopping exercise. It was hypothesized, based on published data using in vitro specimens, that a reduction in AT stiffness may occur after just 1000 loading cycles at physiological stress levels. Ten healthy subjects performed two-legged hopping exercise consisting of 1150–2600 high impacts. Tendon stiffness was determined in several isometric ramp contractions [20%, 40%, 60%, 80% and 100% maximum voluntary contraction (MVC)] during which tendon elongation was measured using ultrasonography and two cameras. Tendon force was calculated by dividing measured ankle torque by magnetic resonance imaging-derived AT lever arm length. Tendon stiffness remained unchanged, being 430±200 N mm−1 before and 390±190 N mm−1 after the exercise [not significant (n.s.)]. Despite the lack of changes in stiffness, maximum tendon force during MVC was reduced from 3.5±0.6 kN to 2.8±0.7 kN (P<0.01). As the proposed decline in stiffness was not observed, it is concluded that mechanical fatigue did not take place in the AT of healthy individuals after a single bout of high-impact exercise performed until exhaustion.

Collaboration


Dive into the Taija Finni's collaboration.

Top Co-Authors

Avatar

Neil J. Cronin

University of Jyväskylä

View shared research outputs
Top Co-Authors

Avatar

Arto J. Pesola

University of Jyväskylä

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paavo V. Komi

University of Jyväskylä

View shared research outputs
Top Co-Authors

Avatar

Jussi Peltonen

University of Jyväskylä

View shared research outputs
Top Co-Authors

Avatar

Lauri Stenroth

University of Jyväskylä

View shared research outputs
Top Co-Authors

Avatar

Sulin Cheng

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Arto Laukkanen

University of Jyväskylä

View shared research outputs
Top Co-Authors

Avatar

Shantanu Sinha

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge