Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Taiji Kawakatsu is active.

Publication


Featured researches published by Taiji Kawakatsu.


Journal of Experimental Botany | 2008

Characterization of a new rice glutelin gene GluD-1 expressed in the starchy endosperm

Taiji Kawakatsu; Masayuki P. Yamamoto; Sakiko Hirose; Masahiro Yano; Fumio Takaiwa

A new glutelin gene, designated GluD-1, has been discovered by comparing the seed storage proteins from 48 japonica and indica rice cultivars on SDS-PAGE gels. Evidence that GluD-1 is a member of the glutelin family was provided by Western blots using anti-glutelin antiserum and by mapping the gene to the chromosomal glutelin gene cluster. The limited GluD-1 size polymorphism among the rice varieties is due to amino acid substitutions rather than to post-transcriptional modification. GluD-1 is maximally expressed in the starchy endosperm starting at 5 d after flowering (DAF) and increasing through 30 DAF, a major difference from the other glutelins which are primarily expressed in the subaleurone from 10–16 DAF. Only about 0.2 kb of the GluD-1 promoter was sufficient to confer inner starchy endosperm-specific expression. The 0.2 kb truncated GluD-1 promoter contains a bifactorial endosperm box consisting of a truncated GCN4 motif (TGA(G/C)TCA) and AAAG Prolamin box (P box), and ACGT and AACA motifs as cis-regulatory elements. Gel retardation assays and trans-activation experiments indicated that the truncated GCN4 and P box are specifically recognized by RISBZ1 b-ZIP and RPBF Dof activators in vitro, respectively, and are synergistically transactivated, indicating that combinatorial interactions of these motifs are involved in essential endosperm-specific regulation. Furthermore, deviation from the cognate GCN4 motif alters tissue-specific expression in the inner starchy endosperm to include other endosperm tissues.


Plant Physiology | 2010

Reducing Rice Seed Storage Protein Accumulation Leads to Changes in Nutrient Quality and Storage Organelle Formation

Taiji Kawakatsu; Sakiko Hirose; Hiroshi Yasuda; Fumio Takaiwa

Rice (Oryza sativa) seed storage proteins (SSPs) are synthesized and deposited in storage organelles in the endosperm during seed maturation as a nitrogen source for germinating seedlings. We have generated glutelin, globulin, and prolamin knockdown lines and have examined their effects on seed quality. A reduction of one or a few SSP(s) was compensated for by increases in other SSPs at both the mRNA and protein levels. Especially, reduction of glutelins or sulfur-rich 10-kD prolamin levels was preferentially compensated by sulfur-poor or other sulfur-rich prolamins, respectively, indicating that sulfur-containing amino acids are involved in regulating SSP composition. Furthermore, a reduction in the levels of 13-kD prolamin resulted in enhancement of the total lysine content by 56% when compared with the wild type. This observation can be mainly accounted for by the increase in lysine-rich proteins. Although reducing the level of glutelins slightly decreased protein storage vacuoles (PSVs), the simultaneous reduction of glutelin and globulin levels altered the inner structure of PSVs, implicating globulin in framing PSV formation. Knock down of 13-kD prolamins not only reduced the size of endoplasmic reticulum-derived protein bodies (PBs) but also altered the rugged peripheral structure. In contrast, PBs became slightly smaller or unchanged by severe suppression of 10- or 16-kD prolamins, respectively, indicating that individual prolamins have distinct functions in the formation of PBs. Extreme increases or decreases in sulfur-poor prolamins resulted in the production of small PBs, suggesting that the ratio of individual prolamins is crucial for proper aggregation and folding of prolamins.


Plant Journal | 2009

Compensation and interaction between RISBZ1 and RPBF during grain filling in rice

Taiji Kawakatsu; Masayuki P. Yamamoto; Satoru M. Touno; Hiroshi Yasuda; Fumio Takaiwa

The rice (Oryza sativa L.) basic leucine Zipper factor RISBZ1 and rice prolamin box binding factor (RPBF) are transcriptional activators of rice seed storage protein (SSP) genes in vivo. To ascertain the functions of these trans-activators in seed development, knock-down (KD) transgenic rice plants were generated in which the accumulation of RISBZ1 and RPBF was reduced in an endosperm-specific manner by co-suppression (KD-RISBZ1 and KD-RPBF). The accumulation of most SSPs changed little between individual KD mutants and wild-type plants, whereas a double KD mutant (KD-RISBZ1/KD-RPBF) resulted in a significant reduction of most SSP gene expression and accumulation. The reduction of both trans-activators also caused a greater reduction in seed starch accumulation than individual KD mutants. Storage lipids were accumulated at reduced levels in KD-RISBZ1 and KD-RISBZ1/KD-RPBF seeds. KD-RPBF and KD-RISBZ1/KD-RPBF seeds exhibited multi-layered aleurone cells. Gene expression of DEFECTIVE KERNEL1 (OsDEK1), CRINKLY4 (OsCR4) and SUPERNUMERARY ALEURONE LAYER 1 (OsSAL1) rice homologues was decreased in the KD mutants, suggesting that these genes are regulated by RISBZ1 and RPBF. These phenotypes suggest that combinatorial interactions between RISBZ1 and RPBF play an essential role during grain filling. The functional redundancy and compensation between RISBZ1 and RPBF possibly account for weak effects on the SSP levels in single KD mutants, and help maintain various processes during seed development in rice. Physical interaction between RISBZ1 and RPBF may ensure that these processes are carried out properly.


Plant Journal | 2012

Signal transduction by IRE1-mediated splicing of bZIP50 and other stress sensors in the endoplasmic reticulum stress response of rice

Shimpei Hayashi; Yuhya Wakasa; Hideyuki Takahashi; Taiji Kawakatsu; Fumio Takaiwa

The endoplasmic reticulum (ER) stress sensor IRE1 transduces signals by inducing the unconventional splicing of mRNAs encoding key transcription factors: HAC1 in yeast and XBP1 in animals. However, no HAC1 or XBP1 homologues have been found in plants, and until recently the substrate for plant IRE1 has remained unknown. This study demonstrates that the Oryza sativa (rice) OsbZIP50 transcription factor, an orthologue of Arabidopsis AtbZIP60, is regulated by IRE1-mediated splicing of its RNA. Despite the presence of a transcriptional activation domain, OsbZIP50 protein is not translocated into the nucleus efficiently in the absence of OsbZIP50 mRNA splicing. Unconventional splicing of OsbZIP50 mRNA causes a frame shift, which results in the appearance of a nuclear localization signal in the newly translated OsbZIP50. OsbZIP50 mRNA is spliced in a similar manner to HAC1 and XBP1 mRNAs; however, this splicing has very different effects on the translation products, a finding that shows the diversity of IRE1-related transcription factors in eukaryotes. In addition, the expression of OsbZIP50 is affected by ER stress sensor proteins OsIRE1, OsbZIP39 and OsbZIP60. ER stress-related genes differ with respect to their dependency on OsbZIP50 for their expression. The findings of this study improve our understanding of the molecular mechanisms underlying the plant ER stress response.


Plant Journal | 2011

Expression of ER quality control-related genes in response to changes in BiP1 levels in developing rice endosperm.

Yuhya Wakasa; Hiroshi Yasuda; Youko Oono; Taiji Kawakatsu; Sakiko Hirose; Hideyuki Takahashi; Shimpei Hayashi; Lijun Yang; Fumio Takaiwa

Binding protein (BiP) is the key chaperone involved in folding of secretory proteins such as seed storage proteins in the ER lumen. To obtain functional information about BiP1, a gene that is predominantly expressed during rice seed maturation, we generated several transgenic rice plants in which various levels of BiP1 protein accumulated in an endosperm-specific manner. Severe suppression (BiP1 KD) or significant over-expression (BiP1 OEmax) of BiP1 not only altered seed phenotype and the intracellular structure of endosperm cells, but also reduced seed storage protein content, starch accumulation and grain weight. Microarray and RT-PCR analyses indicated that expression of many chaperone and co-chaperone genes was induced in transgenic plants, with more prominent expression in the BiP1 KD line than in the BiP1 OEmax line. Transcriptional induction of most chaperones was observed in calli treated with dithiothreitol or tunicamycin, treatments that trigger ER stress, indicating that induction of the chaperone genes in transgenic rice was caused by an ER stress response. In transient assays using rice protoplasts, the ortholog (Os06g0622700) of the AtbZIP60 transcription factor was shown to be involved in activation of some chaperone genes. Slight increases in the BiP1 level compared with wild-type, accompanied by increased levels of calnexin and protein disulfide isomerase-like proteins, resulted in significant enhancement of seed storage protein content, without any change in intracellular structure or seed phenotype. Judicious modification of BiP1 levels in transgenic rice can provide suitable conditions for the production of secretory proteins by alleviating ER stress.


Plant Biotechnology Journal | 2010

Cereal seed storage protein synthesis: fundamental processes for recombinant protein production in cereal grains

Taiji Kawakatsu; Fumio Takaiwa

Cereal seeds provide an ideal production platform for high-value products such as pharmaceuticals and industrial materials because seeds have ample and stable space for the deposition of recombinant products without loss of activity at room. Seed storage proteins (SSPs) are predominantly synthesized and stably accumulated in maturing endosperm tissue. Therefore, understanding the molecular mechanisms regulating SSP expression and accumulation is expected to provide valuable information for producing higher amounts of recombinant products. SSP levels are regulated by several steps at the transcriptional (promoters, transcription factors), translational and post-translational levels (modification, processing trafficking, and deposition). Our objective is to develop a seed production platform capable of producing very high yields of recombinant product. Towards this goal, we review here the individual regulatory steps controlling SSP synthesis and accumulation.


The Plant Cell | 2006

PLASTOCHRON2 regulates leaf initiation and maturation in rice.

Taiji Kawakatsu; Jun-Ichi Itoh; Kazumaru Miyoshi; Nori Kurata; Nena D.G. Alvarez; Bruce Veit; Yasuo Nagato

In higher plants, leaves initiate in constant spatial and temporal patterns. Although the pattern of leaf initiation is a key element of plant shoot architecture, little is known about how the time interval between initiation events, termed plastochron, is regulated. Here, we present a detailed analysis of plastochron2 (pla2), a rice (Oryza sativa) mutant that exhibits shortened plastochron and precocious maturation of leaves during the vegetative phase and ectopic shoot formation during the reproductive phase. The corresponding PLA2 gene is revealed to be an orthologue of terminal ear1, a maize (Zea mays) gene that encodes a MEI2-like RNA binding protein. PLA2 is expressed predominantly in young leaf primordia. We show that PLA2 normally acts to retard the rate of leaf maturation but does so independently of PLA1, which encodes a member of the P450 family. Based on these analyses, we propose a model in which plastochron is determined by signals from immature leaves that act non-cell-autonomously in the shoot apical meristem to inhibit the initiation of new leaves.


Plant and Cell Physiology | 2009

Overexpression of BiP has inhibitory effects on the accumulation of seed storage proteins in endosperm cells of rice.

Hiroshi Yasuda; Sakiko Hirose; Taiji Kawakatsu; Yuhya Wakasa; Fumio Takaiwa

Seed storage proteins are specifically and highly synthesized during seed maturation and are deposited into protein bodies (PBs) via the endoplasmic reticulum (ER) lumen. The accumulation process is mediated by ER chaperones such as luminal binding protein (BiP) and protein disulfide isomerase (PDI). To examine the role of ER chaperones and the relationship between ER chaperones and levels of accumulation of seed storage proteins, we generated transgenic rice plants in which the rice BiP and PDI genes were overexpressed in an endosperm-specific manner under the control of the rice seed storage protein glutelin promoter. The seed phenotype of the PDI-overexpressing transformant was almost identical to that of the wild type, whereas overexpression of BiP resulted in transgenic rice seed that displayed an opaque phenotype with floury and shrunken features. In the BiP-overexpressing line, the levels of accumulation of seed storage proteins and starch contents were significantly lower compared with the wild type. Interestingly, overproduction of BiP in the endosperm of the transformant not only altered the morphological structure of ER-derived PB-I, but also generated unusual new PB-like structures composed of a high electron density matrix containing glutelin and BiP and a low electron density matrix containing prolamins. Notably, polysomes were attached around the aberrant PB-like structures, indicating that this aberrant structure is an ER-derived PB-I derivative. These results suggested that the PB-like structure may be formed in the ER lumen, resulting in inhibition of translation, folding and transport of seed proteins.


Plant Journal | 2009

PLASTOCHRON3/GOLIATH encodes a glutamate carboxypeptidase required for proper development in rice.

Taiji Kawakatsu; Graziana Taramino; Jun-Ichi Itoh; Justin Allen; Yutaka Sato; Soon-Kwan Hong; Ryan Yule; Nobuhiro Nagasawa; Mikiko Kojima; Makoto Kusaba; Hitoshi Sakakibara; Hajime Sakai; Yasuo Nagato

Most aerial parts of the plant body are products of the continuous activity of the shoot apical meristem (SAM). Leaves are the major component of the aerial plant body, and their temporal and spatial distribution mainly determines shoot architecture. Here we report the identification of the rice gene PLASTOCHRON3 (PLA3)/GOLIATH (GO) that regulates various developmental processes including the rate of leaf initiation (the plastochron). PLA3/GO encodes a glutamate carboxypeptidase, which is thought to catabolize small acidic peptides and produce small signaling molecules. pla3 exhibits similar phenotypes to pla1 and pla2- a shortened plastochron, precocious leaf maturation and rachis branch-to-shoot conversion in the reproductive phase. However, in contrast to pla1 and pla2, pla3 showed pleiotropic phenotypes including enlarged embryo, seed vivipary, defects in SAM maintenance and aberrant leaf morphology. Consistent with these pleiotropic phenotypes, PLA3 is expressed in the whole plant body, and is involved in plant hormone homeostasis. Double mutant analysis revealed that PLA1, PLA2 and PLA3 are regulated independently but function redundantly. Our results suggest that PLA3 modulates various signaling pathways associated with a number of developmental processes.


Plant and Cell Physiology | 2012

A Rice Transmembrane bZIP Transcription Factor, OsbZIP39, Regulates the Endoplasmic Reticulum Stress Response

Hideyuki Takahashi; Taiji Kawakatsu; Yuhya Wakasa; Shimpei Hayashi; Fumio Takaiwa

The endoplasmic reticulum (ER) responds to the accumulation of unfolded proteins in its lumen (ER stress) by activating intracellular signal transduction pathways. These pathways are known as the ER stress response or the unfolded protein response. In this study, three rice basic leucine zipper (bZIP) transcription factors (OsbZIP39, OsbZIP50 and OsbZIP60) containing putative transmembrane domains (TMDs) in their C-terminal regions were identified as candidates of the ER stress sensor transducer. One of these proteins, OsbZIP39, was characterized in this study. OsbZIP39 was shown to associate with microsomes as a membrane-integrated protein using the subcellular fractionation method. When the full length and a truncated form of OsbZIP39 without the TMD (OsbZIP39ΔC) was fused to green fluorescent protein (GFP) and transfected into rice protoplasts, the proteins were identified in the cytoplasm and nucleus, respectively. This suggests that OsbZIP39 may be converted into a soluble truncated form by proteolytic cleavage and subsequently translocated to the nucleus. Expression of OsbZIP39ΔC clearly activated the binding protein 1 (BiP1) promoter in a rice protoplast transient assay. Overexpression of OsbZIP39ΔC in stable transgenic rice also led to the up-regulation of several ER stress response genes including BiP1 and OsbZIP50 in the absence of ER stress. However, in the OsbZIP39ΔC-overexpressing line, OsbZIP50 mRNA did not undergo IRE1 (inositol-requiring protein 1)-mediated cytoplasmic splicing that is required for its activation. These data indicate that OsbZIP39 may be directly involved in the regulation of several ER stress response genes.

Collaboration


Dive into the Taiji Kawakatsu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuhya Wakasa

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lijun Yang

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kazumaru Miyoshi

National Institute of Genetics

View shared research outputs
Researchain Logo
Decentralizing Knowledge