Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Taiki Magome is active.

Publication


Featured researches published by Taiki Magome.


Algorithms | 2009

Computer-Aided Diagnosis Systems for Brain Diseases in Magnetic Resonance Images

Hidetaka Arimura; Taiki Magome; Yasuo Yamashita; Daisuke Yamamoto

This paper reviews the basics and recent researches of computer-aided diagnosis (CAD) systems for assisting neuroradiologists in detection of brain diseases, e.g., asymptomatic unruptured aneurysms, Alzheimers disease, vascular dementia, and multiple sclerosis (MS), in magnetic resonance (MR) images. The CAD systems consist of image feature extraction based on image processing techniques and machine learning classifiers such as linear discriminant analysis, artificial neural networks, and support vector machines. We introduce useful examples of the CAD systems in the neuroradiology, and conclude with possibilities in the future of the CAD systems for brain diseases in MR images.


Computerized Medical Imaging and Graphics | 2010

Computer-aided detection of multiple sclerosis lesions in brain magnetic resonance images: False positive reduction scheme consisted of rule-based, level set method, and support vector machine

Daisuke Yamamoto; Hidetaka Arimura; Shingo Kakeda; Taiki Magome; Yasuo Yamashita; Fukai Toyofuku; Masafumi Ohki; Yoshiharu Higashida; Yukunori Korogi

The purpose of this study was to develop a computerized method for detection of multiple sclerosis (MS) lesions in brain magnetic resonance (MR) images. We have proposed a new false positive reduction scheme, which consisted of a rule-based method, a level set method, and a support vector machine. We applied the proposed method to 49 slices selected from 6 studies of three MS cases including 168 MS lesions. As a result, the sensitivity for detection of MS lesions was 81.5% with 2.9 false positives per slice based on a leave-one-candidate-out test, and the similarity index between MS regions determined by the proposed method and neuroradiologists was 0.768 on average. These results indicate the proposed method would be useful for assisting neuroradiologists in assessing the MS in clinical practice.


Computerized Medical Imaging and Graphics | 2010

Computer-aided evaluation method of white matter hyperintensities related to subcortical vascular dementia based on magnetic resonance imaging

Yasuo Kawata; Hidetaka Arimura; Yasuo Yamashita; Taiki Magome; Masafumi Ohki; Fukai Toyofuku; Yoshiharu Higashida; Kazuhiro Tsuchiya

It has been reported that the severity of subcortical vascular dementia (VaD) correlated with an area ratio of white matter hyperintensity (WMH) regions to the brain parenchyma (WMH area ratio). The purpose of this study was to develop a computer-aided evaluation method of WMH regions for diagnosis of subcortical VaD based on magnetic resonance (MR) images. A brain parenchymal region was segmented based on the histogram analysis of a T1-weigthed image. The WMH regions were segmented on the subtraction image between a T1-weighted and fluid-attenuated inversion-recovery (FLAIR) images using two segmentation methods, i.e., a region-growing technique and a level-set method, which were automatically and adaptively selected on each WMH region based on its image features by using a support vector machine. We applied the proposed method to 33 slices of the three types of MR images with 245 lesions, which were acquired from 10 patients (age range: 64-90 years, mean: 78) with a diagnosis of VaD on a 1.5-T MR imaging scanner. The average similarity index between regions determined by a manual method and the proposed method was 93.5+/-2.0% for brain parenchymal regions and 78.2+/-11.0% for WMH regions. The WMH area ratio obtained by the proposed method correlated with that determined by two neuroradiologists with a correlation coefficient of 0.992. The results presented in this study suggest that the proposed method could assist neuroradiologists in the evaluation of WMH regions related to the subcortical VaD.


Radiation Oncology | 2014

Independent absorbed-dose calculation using the Monte Carlo algorithm in volumetric modulated arc therapy

Akihiro Haga; Taiki Magome; Shigeharu Takenaka; Toshikazu Imae; A. Sakumi; Akihiro Nomoto; Hiroshi Igaki; Kenshiro Shiraishi; Hideomi Yamashita; Kuni Ohtomo; Keiichi Nakagawa

PurposeTo report the result of independent absorbed-dose calculations based on a Monte Carlo (MC) algorithm in volumetric modulated arc therapy (VMAT) for various treatment sites.Methods and materialsAll treatment plans were created by the superposition/convolution (SC) algorithm of SmartArc (Pinnacle V9.2, Philips). The beam information was converted into the format of the Monaco V3.3 (Elekta), which uses the X-ray voxel-based MC (XVMC) algorithm. The dose distribution was independently recalculated in the Monaco. The dose for the planning target volume (PTV) and the organ at risk (OAR) were analyzed via comparisons with those of the treatment plan.Before performing an independent absorbed-dose calculation, the validation was conducted via irradiation from 3 different gantry angles with a 10- × 10-cm2 field. For the independent absorbed-dose calculation, 15 patients with cancer (prostate, 5; lung, 5; head and neck, 3; rectal, 1; and esophageal, 1) who were treated with single-arc VMAT were selected. To classify the cause of the dose difference between the Pinnacle and Monaco TPSs, their calculations were also compared with the measurement data.ResultIn validation, the dose in Pinnacle agreed with that in Monaco within 1.5%. The agreement in VMAT calculations between Pinnacle and Monaco using phantoms was exceptional; at the isocenter, the difference was less than 1.5% for all the patients. For independent absorbed-dose calculations, the agreement was also extremely good. For the mean dose for the PTV in particular, the agreement was within 2.0% in all the patients; specifically, no large difference was observed for high-dose regions. Conversely, a significant difference was observed in the mean dose for the OAR. For patients with prostate cancer, the mean rectal dose calculated in Monaco was significantly smaller than that calculated in Pinnacle.ConclusionsThere was no remarkable difference between the SC and XVMC calculations in the high-dose regions. The difference observed in the low-dose regions may have arisen from various causes such as the intrinsic dose deviation in the MC calculation, modeling accuracy, and CT-to-density table used in each planning system It is useful to perform independent absorbed-dose calculations with the MC algorithm in intensity-modulated radiation therapy commissioning.


Journal of Radiation Research | 2012

Computerized estimation of patient setup errors in portal images based on localized pelvic templates for prostate cancer radiotherapy

Hidetaka Arimura; Wataru Itano; Yoshiyuki Shioyama; Norimasa Matsushita; Taiki Magome; Tadamasa Yoshitake; Shigeo Anai; Katsumasa Nakamura; Satoshi Yoshidome; Akihiko Yamagami; Hiroshi Honda; Masafumi Ohki; Fukai Toyofuku; Hideki Hirata

We have developed a computerized method for estimating patient setup errors in portal images based on localized pelvic templates for prostate cancer radiotherapy. The patient setup errors were estimated based on a template-matching technique that compared the portal image and a localized pelvic template image with a clinical target volume produced from a digitally reconstructed radiography (DRR) image of each patient. We evaluated the proposed method by calculating the residual error between the patient setup error obtained by the proposed method and the gold standard setup error determined by consensus between two radiation oncologists. Eleven training cases with prostate cancer were used for development of the proposed method, and then we applied the method to 10 test cases as a validation test. As a result, the residual errors in the anterior–posterior, superior–inferior and left–right directions were smaller than 2 mm for the validation test. The mean residual error was 2.65 ± 1.21 mm in the Euclidean distance for training cases, and 3.10 ± 1.49 mm for the validation test. There was no statistically significant difference in the residual error between the test for training cases and the validation test (P = 0.438). The proposed method appears to be robust for detecting patient setup error in the treatment of prostate cancer radiotherapy.


Journal of Radiation Research | 2013

Computer-aided beam arrangement based on similar cases in radiation treatment-planning databases for stereotactic lung radiation therapy

Taiki Magome; Hidetaka Arimura; Yoshiyuki Shioyama; A Mizoguchi; Chiaki Tokunaga; Katsumasa Nakamura; Hiroshi Honda; Masafumi Ohki; Fukai Toyofuku; Hideki Hirata

The purpose of this study was to develop a computer-aided method for determination of beam arrangements based on similar cases in a radiotherapy treatment-planning database for stereotactic lung radiation therapy. Similar-case-based beam arrangements were automatically determined based on the following two steps. First, the five most similar cases were searched, based on geometrical features related to the location, size and shape of the planning target volume, lung and spinal cord. Second, five beam arrangements of an objective case were automatically determined by registering five similar cases with the objective case, with respect to lung regions, by means of a linear registration technique. For evaluation of the beam arrangements five treatment plans were manually created by applying the beam arrangements determined in the second step to the objective case. The most usable beam arrangement was selected by sorting the five treatment plans based on eight plan evaluation indices, including the D95, mean lung dose and spinal cord maximum dose. We applied the proposed method to 10 test cases, by using an RTP database of 81 cases with lung cancer, and compared the eight plan evaluation indices between the original treatment plan and the corresponding most usable similar-case-based treatment plan. As a result, the proposed method may provide usable beam arrangements, which have no statistically significant differences from the original beam arrangements (P > 0.05) in terms of the eight plan evaluation indices. Therefore, the proposed method could be employed as an educational tool for less experienced treatment planners.


Journal of Radiation Research | 2014

Computer-assisted delineation of lung tumor regions in treatment planning CT images with PET/CT image sets based on an optimum contour selection method.

Ze Jin; Hidetaka Arimura; Yoshiyuki Shioyama; Katsumasa Nakamura; Jumpei Kuwazuru; Taiki Magome; Hidetake Yabuuchi; Hiroshi Honda; Hideki Hirata; Masayuki Sasaki

To assist radiation oncologists in the delineation of tumor regions during treatment planning for lung cancer, we have proposed an automated contouring algorithm based on an optimum contour selection (OCS) method for treatment planning computed tomography (CT) images with positron emission tomography (PET)/CT images. The basic concept of the OCS is to select a global optimum object contour based on multiple active delineations with a level set method around tumors. First, the PET images were registered to the planning CT images by using affine transformation matrices. The initial gross tumor volume (GTV) of each lung tumor was identified by thresholding the PET image at a certain standardized uptake value, and then each initial GTV location was corrected in the region of interest of the planning CT image. Finally, the contours of final GTV regions were determined in the planning CT images by using the OCS. The proposed method was evaluated by testing six cases with a Dice similarity coefficient (DSC), which denoted the degree of region similarity between the GTVs contoured by radiation oncologists and the proposed method. The average three-dimensional DSC for the six cases was 0.78 by the proposed method, but only 0.34 by a conventional method based on a simple level set method. The proposed method may be helpful for treatment planners in contouring the GTV regions.


BioMed Research International | 2013

Similar-Case-Based Optimization of Beam Arrangements in Stereotactic Body Radiotherapy for Assisting Treatment Planners

Taiki Magome; Hidetaka Arimura; Yoshiyuki Shioyama; Katsumasa Nakamura; Hiroshi Honda; Hideki Hirata

Objective. To develop a similar-case-based optimization method for beam arrangements in lung stereotactic body radiotherapy (SBRT) to assist treatment planners. Methods. First, cases that are similar to an objective case were automatically selected based on geometrical features related to a planning target volume (PTV) location, PTV shape, lung size, and spinal cord position. Second, initial beam arrangements were determined by registration of similar cases with the objective case using a linear registration technique. Finally, beam directions of the objective case were locally optimized based on the cost function, which takes into account the radiation absorption in normal tissues and organs at risk. The proposed method was evaluated with 10 test cases and a treatment planning database including 81 cases, by using 11 planning evaluation indices such as tumor control probability and normal tissue complication probability (NTCP). Results. The procedure for the local optimization of beam arrangements improved the quality of treatment plans with significant differences (P < 0.05) in the homogeneity index and conformity index for the PTV, V10, V20, mean dose, and NTCP for the lung. Conclusion. The proposed method could be usable as a computer-aided treatment planning tool for the determination of beam arrangements in SBRT.


Medical Physics | 2015

Characterization of deformation and physical force in uniform low contrast anatomy and its impact on accuracy of deformable image registration

Raj Varadhan; Taiki Magome; Susanta K. Hui

PURPOSE Little is known about the effect of force on organ deformation and consequently its impact on precision dose delivery. The purpose of this study was to evaluate the fundamental relationship between anatomic deformation and its causative physical force to ascertain if a threshold limit exists for deformable image registration (DIR) accuracy in uniform low contrast anatomy, beyond which its applicability may be clinically inappropriate. METHODS To simulate a simplified model, a tissue equivalent deformable bladder phantom with 21 implanted fiducial markers was developed using a viscoelastic polymer. The bladder phantom was deformed by applying a force in increments from 10 to 70 N. DIR accuracy was studied using intensity based mim and Velocity B-spline algorithms by comparing the 3D vector of the 21 marker locations at the original target image with the synthetically derived marker positions from each target image obtained from DIR. RESULTS The relationship between applied force in 1D deformation along the axis of applied force and 3D deformation of the phantom showed a linear response. The maximum and average displacements of markers exhibited a nonlinear response to the applied force. In the absence of implanted markers, DIR performance was suboptimal with a threshold limit of only 20 N (5 mm deformation) beyond which the average marker error was ≥3 mm. DIR performance improved significantly with the addition of only one marker for the intensity based mim algorithm. In contrast, the Velocity B-spline algorithm showed reduced sensitivity to the number of markers introduced in both the source and target images. CONCLUSIONS The limits of applicability of DIR are strongly dependent on the magnitude of deformation. There is a threshold limit beyond which the accuracy of DIR fails in uniform low contrast anatomy. The sensitivity of the DIR performance to the number of fiducial markers present indicates that if DIR performance is solely assessed with the contrast rich features present in clinical anatomy, the results may not be reflective of the true DIR performance in uniform low contrast anatomy.


Radiation Oncology | 2014

Reconstruction of the treatment area by use of sinogram in helical tomotherapy

Akihiro Haga; Keiichi Nakagawa; Calvin R. Maurer; Ken Ruchala; E Chao; Dylan Casey; Satoshi Kida; Dousatsu Sakata; Masahiro Nakano; Taiki Magome; Yoshitaka Masutani

BackgroundTomoTherapy (Accuray, USA) has an image-guided radiotherapy system with a megavoltage (MV) X-ray source and an on-board imaging device. This system allows one to acquire the delivery sinogram during the actual treatment, which partly includes information from the irradiated object. In this study, we try to develop image reconstruction during treatment with helical tomotherapy.FindingsSinogram data were acquired during helical tomotherapy delivery using an arc-shaped detector array that consists of 576 xenon-gas filled detector cells. In preprocessing, these were normalized with full air-scan data. A software program was developed that reconstructs 3D images during treatment with corrections as; (1) the regions outside the field were masked not to be added in the backprojection (a masking correction), and (2) each voxel of the reconstructed image was divided by the number of the beamlets passing through its voxel (a ray-passing correction).The masking correction produced a reconstructed image, however, it contained streak artifacts. The ray-passing correction reduced this artifact. Although the SNR (the ratio of mean to standard deviation in a homogeneous region) and the contrast of the reconstructed image were slightly improved with the ray-passing correction, use of only the masking correction was sufficient for the visualization purpose.ConclusionsThe visualization of the treatment area was feasible by using the sinogram in helical tomotherapy. This proposed method would be useful in the treatment verification.

Collaboration


Dive into the Taiki Magome's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge