Taina Suntio
University of Helsinki
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Taina Suntio.
Acta Neuropathologica | 2015
Markus Damme; Taina Suntio; Paul Saftig; Eeva-Liisa Eskelinen
Autophagy delivers cytoplasmic components and organelles to lysosomes for degradation. This pathway serves to degrade nonfunctional or unnecessary organelles and aggregate-prone and oxidized proteins to produce substrates for energy production and biosynthesis. Macroautophagy delivers large aggregates and whole organelles to lysosomes by first enveloping them into autophagosomes that then fuse with lysosomes. Chaperone-mediated autophagy (CMA) degrades proteins containing the KFERQ-like motif in their amino acid sequence, by transporting them from the cytosol across the lysosomal membrane into the lysosomal lumen. Autophagy is especially important for the survival and homeostasis of postmitotic cells like neurons, because these cells are not able to dilute accumulating detrimental substances and damaged organelles by cell division. Our current knowledge on the autophagic pathways and molecular mechanisms and regulation of autophagy will be summarized in this review. We will describe the physiological functions of macroautophagy and CMA in neuronal cells. Finally, we will summarize the current evidence showing that dysfunction of macroautophagy and/or CMA contributes to neuronal diseases. We will give an overview of our current knowledge on the role of autophagy in aging neurons, and focus on the role of autophagy in four types of neurodegenerative diseases, i.e., amyotrophic lateral sclerosis and frontotemporal dementia, prion diseases, lysosomal storage diseases, and Parkinson’s disease.
Traffic | 2001
Eeva Sievi; Taina Suntio; Marja Makarow
Yps1p is a member of the GPI‐anchored aspartic proteases which reside at the plasma membrane of Saccharomyces cerevisiae. Here we show that in Δerg6 cells, where a late biosynthetic step of the membrane lipid ergosterol is blocked, part of Yps1p was targeted to the vacuole. There it overtook proteolytic functions of the Pep4p protease, resulting in processing of pro‐CPY to CPY in cells lacking the PEP4 gene. Yps1p was enriched in membrane microdomains, as it could be isolated in detergent‐insoluble complexes from both normal and Δerg6 cells. Vacuolar Yps1 caused degradation of a mammalian sialyltransferase ectodomain fusion protein (ST6Ne), which was directed from the Golgi to the vacuole in both normal and Δerg6 cells. Unexpectedly, ST6Ne was degraded also when arrested in the Golgi in a temperature‐sensitive sec7–1 mutant. Newly synthesized Yps1p, in transit to the plasma membrane, was also involved in the Golgi‐associated degradation. These data show that GPI‐anchored proteases, whose biological roles are unknown, may reside and function in different subcellular locations.
Plant Biotechnology Journal | 2009
Katri Eskelin; Anneli Ritala; Taina Suntio; Susan Blumer; Heidi Holkeri; Eva H. Wahlström; Julio Baez; Kristiina Mäkinen; Nuutila Anna Maria
Recombinant DNA technology can be used to design and express collagen and gelatin-related proteins with predetermined composition and structure. Barley seed was chosen as a production host for a recombinant full-length collagen type I alpha1 (rCIa1) and a related 45-kDa rCIa1 fragment. The transgenic barley seeds were shown to accumulate both the rCIa1 and the 45-kDa rCIa1 fragment. Even when the amount of the rCIa1 was just above the detection threshold, this work using rCIa1 as a model demonstrated for the first time that barley seed can be used as a production system for collagen-related structural proteins. The 45-kDa rCI1a fragment expression, targeted to the endoplasmic reticulum, was controlled by three different promoters (a constitutive maize ubiquitin, seed endosperm-specific rice glutelin and germination-specific barley alpha-amylase fusion) to compare their effects on rCIa1 accumulation. Highest accumulation of the 45-kDa rCIa1 was obtained with the glutelin promoter (140 mg/kg seed), whereas the lowest accumulation was obtained with the alpha-amylase promoter. To induce homozygosity for stable 45-kDa rCIa1 production in the transgenic lines, doubled haploid (DH) progeny was generated through microspore culture. The 45-kDa rCIa1 expression levels achieved from the best DH lines were 13 mg/kg dry seeds under the ubiquitin promoter and 45 mg/kg dry seeds under the glutelin promoter. Mass spectroscopy and amino acid composition analysis of the purified 45-kDa rCIa1 fragment revealed that a small percent of prolines were hydroxylated with no additional detectable post-translational modifications.
Molecular Plant Pathology | 2012
Taina Suntio; Kristiina Mäkinen
The effect of abiotic stress responses on Potato virus A (PVA; genus Potyvirus) infection was studied. Salt, osmotic and wounding stress all increased PVA gene expression in infected Nicotiana benthamiana leaves. According to the literature, an early response to these stresses is an elevation in cytosolic Ca(2+) concentration. The infiltration of 0.1 m CaCl(2) into the infected leaf area enhanced the translation of PVA RNA, and this Ca(2+) -induced effect was more profound than that induced solely by osmotic stress. The inhibition of voltage-gated Ca(2+) channels within the plasma membrane abolished the Ca(2+) effect, suggesting that Ca(2+) had to be transported into the cytosol to affect viral gene expression. This was also supported by a reduced wounding effect in the presence of the Ca(2+) -chelating agent ethylene glycol tetraacetic acid (EGTA). In the absence of viral replication, the intense synthesis of viral proteins in response to Ca(2+) was transient. However, a Ca(2+) pulse administered at the onset of wild-type PVA infection enhanced the progress of infection within the locally infected leaf, and the virus appeared earlier in the systemic leaves than in the control plants. This suggests that the cellular environment was thoroughly modified by the Ca(2+) pulse to support viral infection. One message of this study is that the sensing of abiotic stress, which leads to cellular responses, probably via Ca(2+) signalling, associated with enhanced virus infection, may lead to higher field crop losses. Therefore, the effect of abiotic stress on plant viral infection warrants further analysis.
Plant Molecular Biology Reporter | 1994
Taina Suntio; Teemu H. Teeri
We have constructed a bifunctional reporter gene forAgrobacterium-mediated tagging of plant genes. The new reporter codes for both a selectable phenotype and a histochemically detectable product. In promoter tagging the reporter gene is integrated into the plant genome and becomes activated by upstream transcriptional control elements of the plant. We used this reporter to tag shoot-apex-specific tobacco genes. Among sixty independent transformants, we obtained three clones that express the reporter gene only in the meristematic regions of the shoot.
Methods of Molecular Biology | 2006
Marja Makarow; Anna-Liisa Hänninen; Taina Suntio; Ricardo Nunes Bastos
Proper folding, and consequently exit from the endoplasmic reticulum (ER) and secretion of heterologous exocytic proteins in yeast can be rescued by fusing the proteins to certain yeast-derived polypeptides. Biologically active mammalian glycoproteins can be produced in Saccharomyces cerevisiae and Pichia pastoris by joining them to a fragment of a natural secretory glycoprotein of S. cerevisiae, Hsp150delta. The performance of the Hsp150delta carrier in both yeasts appears to exceed that of the MFalpha leader, which is widely used in industrial protein production. Here we describe the use of the Hsp150delta carrier in P. pastoris in both shake flask and fermentor cultivations. As a reporter protein we use the periplasmic disulfide-bonded Escherichia coli enzyme beta-lactamase.
Yeast | 2011
Taina Suntio; Sergey A. Shiryaev; Marja Makarow
Proteins exit the endoplasmic reticulum (ER) in vesicles pinching off from the membrane at sites covered by the COPII coat, which consists of Sec23/24p and Sec13/31p. We have shown that the glycoprotein Hsp150 exits the ER in the absence of Sec13p or any member of the Sec24p family. The determinant responsible for this resides in the C‐terminal domain of Hsp150 (CTD). Here, A‐ and B‐type Walker motifs were identified in the CTD. Authentic Hsp150 from the yeast culture medium, as well as Hsp150 and the CTD fragment produced in Escherichia coli, exhibited ATPase activity nearly three times higher than the published activity of the ER chaperone Kar2p/BiP. Deletion of the Walker motif, and a K335A mutation in it, abolished the ATPase activity. Hsp150 homologues Pir3p and Pir4p, differing in critical amino acids of the Walker motif, also lacked ATPase activity. Unexpectedly, inactivation of the ATPase activity blocked ER exit of Hsp150 in the absence of Sec24p or Sec13p function, whereas secretion in normal cells was not compromised. To our knowledge this is the first documentation of the ATPase activity of a protein serving an intracellular transport function. Copyright
Molecular Biology of the Cell | 1998
Eija Paunola; Taina Suntio; Eija Jämsä; Marja Makarow
Molecular Biology of the Cell | 2002
Netta Fatal; Taina Suntio; Marja Makarow
Journal of Cell Science | 1999
Taina Suntio; Anton Shmelev; Maria Lund; Marja Makarow