Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Taira Mayanagi is active.

Publication


Featured researches published by Taira Mayanagi.


Journal of Cell Biology | 2007

Dual roles of myocardin-related transcription factors in epithelial–mesenchymal transition via slug induction and actin remodeling

Tsuyoshi Morita; Taira Mayanagi; Kenji Sobue

Epithelial–mesenchymal transition (EMT) is a critical process occurring during embryonic development and in fibrosis and tumor progression. Dissociation of cell–cell contacts and remodeling of the actin cytoskeleton are major events of the EMT. Here, we show that myocardin-related transcription factors (MRTFs; also known as MAL and MKL) are critical mediators of transforming growth factor β (TGF-β) 1–induced EMT. In all epithelial cell lines examined here, TGF-β1 triggers the nuclear translocation of MRTFs. Ectopic expression of constitutive-active MRTF-A induces EMT, whereas dominant-negative MRTF-A or knockdown of MRTF-A and -B prevents the TGF-β1–induced EMT. MRTFs form complexes with Smad3. Via Smad3, the MRTF–Smad3 complexes bind to a newly identified cis-element GCCG-like motif in the promoter region of Canis familiaris and the human slug gene, which activates slug transcription and thereby dissociation of cell–cell contacts. MRTFs also increase the expression levels of actin cytoskeletal proteins via serum response factor, thereby triggering reorganization of the actin cytoskeleton. Thus, MRTFs are important mediators of TGF-β1–induced EMT.


Molecular Psychiatry | 2009

Detrimental effects of glucocorticoids on neuronal migration during brain development.

Kentaro Fukumoto; Tsuyoshi Morita; Taira Mayanagi; Daisuke Tanokashira; T Yoshida; A Sakai; Kenji Sobue

Glucocorticoids, the most downstream effectors of the hypothalamus–pituitary–adrenal axis, are one of main mediators of the stress reaction. Indeed, exposure to high levels of stress-triggered glucocorticoids is detrimental to brain development associated with abnormal behaviors in experimental animals and the risk of psychiatric disorders in humans. Despite the wealth of this knowledge, the cellular and molecular mechanisms underlying the detrimental effects of glucocorticoids on brain development remain unclear. Here, we show that excess glucocorticoids retard the radial migration of post-mitotic neurons during the development of the cerebral cortex, and identify an actin regulatory protein, caldesmon, as the glucocorticoids’ main target. The upregulation of caldesmon expression is mediated by glucocorticoid receptor-dependent transcription of the CALD1 gene encoding caldesmon. This upregulated caldesmon negatively controls the function of myosin II, leading to changes in cell shape and migration. The depletion of caldesmon in vivo impairs radial migration. The overexpression of caldesmon also causes delayed radial migration during cortical development, mimicking the excessive glucocorticoid-induced retardation of radial migration. We conclude that an appropriate range of caldesmon expression is critical for radial migration, and that its overexpression induced by excess glucocorticoid retards radial migration during cortical development. Thus, this study provides a novel insight into the underlying mechanism of glucocorticoid-related neurodevelopmental disorders.


Journal of Biological Chemistry | 2007

Changes in the balance between caldesmon regulated by p21-activated kinases and the Arp2/3 complex govern podosome formation.

Tsuyoshi Morita; Taira Mayanagi; Toshiyuki Yoshio; Kenji Sobue

Podosomes are dynamic cell adhesion structures that degrade the extracellular matrix, permitting extracellular matrix remodeling. Accumulating evidence suggests that actin and its associated proteins play a crucial role in podosome dynamics. Caldesmon is localized to the podosomes, and its expression is down-regulated in transformed and cancer cells. Here we studied the regulatory mode of caldesmon in podosome formation in Rous sarcoma virus-transformed fibroblasts. Exogenous expression analyses revealed that caldesmon represses podosome formation triggered by the N-WASP-Arp2/3 pathway. Conversely, depletion of caldesmon by RNA interference induces numerous small-sized podosomes with high dynamics. Caldesmon competes with the Arp2/3 complex for actin binding and thereby inhibits podosome formation. p21-activated kinases (PAK)1 and 2 are also repressors of podosome formation via phosphorylation of caldesmon. Consequently, phosphorylation of caldesmon by PAK1/2 enhances this regulatory mode of caldesmon. Taken together, we conclude that in Rous sarcoma virus-transformed cells, changes in the balance between PAK1/2-regulated caldesmon and the Arp2/3 complex govern the formation of podosomes.


Cell Adhesion & Migration | 2011

Diversification of caldesmon-linked actin cytoskeleton in cell motility

Taira Mayanagi; Kenji Sobue

The actin cytoskeleton plays a key role in regulating cell motility. Caldesmon (CaD) is an actin-linked regulatory protein found in smooth muscle and non-muscle cells that is conserved among a variety of vertebrates. It binds and stabilizes actin filaments, as well as regulating actin-myosin interaction in a calcium (Ca2+)/calmodulin (CaM)- and/or phosphorylation-dependent manner. CaD function is regulated qualitatively by Ca2+/CaM and by its phosphorylation state and quantitatively at the mRNA level, by three different transcriptional regulation of the CALD1 gene. CaD has numerous functions in cell motility, such as migration, invasion, and proliferation, exerted via the reorganization of the actin cytoskeleton. Here we will outline recent findings regarding CaD’s structural features and functions.


Journal of Biological Chemistry | 2008

Glucocorticoid Receptor-mediated Expression of Caldesmon Regulates Cell Migration via the Reorganization of the Actin Cytoskeleton

Taira Mayanagi; Tsuyoshi Morita; Ken'ichiro Hayashi; Kentaro Fukumoto; Kenji Sobue

Glucocorticoids (GCs) play important roles in numerous cellular processes, including growth, development, homeostasis, inhibition of inflammation, and immunosuppression. Here we found that GC-treated human lung carcinoma A549 cells exhibited the enhanced formation of the thick stress fibers and focal adhesions, resulting in suppression of cell migration. In a screen for GC-responsive genes encoding actin-interacting proteins, we identified caldesmon (CaD), which is specifically up-regulated in response to GCs. CaD is a regulatory protein involved in actomyosin-based contraction and the stability of actin filaments. We further demonstrated that the up-regulation of CaD expression was controlled by glucocorticoid receptor (GR). An activated form of GR directly bound to the two glucocorticoid-response element-like sequences in the human CALD1 promoter and transactivated the CALD1 gene, thereby up-regulating the CaD protein. Forced expression of CaD, without GC treatment, also enhanced the formation of thick stress fibers and focal adhesions and suppressed cell migration. Conversely, depletion of CaD abrogated the GC-induced phenotypes. The results of this study suggest that the GR-dependent up-regulation of CaD plays a pivotal role in regulating cell migration via the reorganization of the actin cytoskeleton.


The Journal of Neuroscience | 2012

Glucocorticoid Suppresses Dendritic Spine Development Mediated by Down-Regulation of Caldesmon Expression

Daisuke Tanokashira; Tsuyoshi Morita; Ken’ichiro Hayashi; Taira Mayanagi; Kentaro Fukumoto; Yoshiko Kubota; Toshihide Yamashita; Kenji Sobue

Glucocorticoids (GCs) mediate the effects of stress to cause structural plasticity in brain regions such as the hippocampus, including simplification of dendrites and shrinkage of dendritic spines. However, the molecular mechanics linking stress and GCs to these effects remain largely unclear. Here, we demonstrated that corticosterone (CORT) reduces the expression levels of caldesmon (CaD), causing dendritic spines to become vulnerable. CaD regulates cell motility by modulating the actin-myosin system and actin filament stability. In cultured rat hippocampal neurons, CaD localized to dendritic spines by binding to filamentous actin (F-actin), and CaD expression levels increased during spine development. CaD stabilized the F-actin dynamics in spines, thereby enlarging the spine heads, whereas CaD knockdown decreased the spine-head size via destabilization of the F-actin dynamics. CaD was also required for chemical LTP-induced actin stabilization. The CaD expression levels were markedly decreased by exposure to CORT mediated by suppression of serum response factor-dependent transcription. High CORT levels reduced both the spine-head size and F-actin stability similarly to CaD knockdown, and overexpressing CaD abolished the detrimental effect of CORT on dendritic spine development. These results indicate that CaD enlarges the spine-head size by stabilizing F-actin dynamics, and that CaD is a critical target in the GC-induced detrimental effects on dendritic spine development.


Journal of Biological Chemistry | 2016

Docosahexaenoic Acid Promotes Axon Outgrowth by Translational Regulation of Tau and Collapsin Response Mediator Protein 2 Expression

Toshinari Mita; Taira Mayanagi; Hiroshi Ichijo; Kentaro Fukumoto; Kotaro Otsuka; Akio Sakai; Kenji Sobue

n-3 PUFAs are essential for neuronal development and brain function. However, the molecular mechanisms underlying their biological effects remain unclear. Here we examined the mechanistic action of docosahexaenoic acid (DHA), the most abundant n-3 polyunsaturated fatty acids in the brain. We found that DHA treatment of cortical neurons resulted in enhanced axon outgrowth that was due to increased axon elongation rates. DHA-mediated axon outgrowth was accompanied by the translational up-regulation of Tau and collapsin response mediator protein 2 (CRMP2), two important axon-related proteins, and the activation of Akt and p70 S6 kinase. Consistent with these findings, rapamycin, a potent inhibitor of mammalian target of rapamycin (mTOR), prevented DHA-mediated axon outgrowth and up-regulation of Tau and CRMP2. In addition, DHA-dependent activation of the Akt-mTOR-S6K pathway enhanced 5′-terminal oligopyrimidine tract-dependent translation of Tau and CRMP2. Therefore, our results revealed an important role for the Akt-mTOR-S6K pathway in DHA-mediated neuronal development.


Journal of Biological Chemistry | 2012

Caldesmon Regulates Axon Extension through Interaction with Myosin II

Tsuyoshi Morita; Taira Mayanagi; Kenji Sobue

Background: Axon extension, an essential step for creating neural circuits, is regulated by cytoskeletal dynamics. Results: Caldesmon is a regulator of the actin cytoskeleton and enhances axon extension through direct interaction with myosin II. Conclusion: Caldesmon binding to myosin II inhibits myosin II function, resulting in the enhancement of axon extension. Significance: This study elucidates how caldesmon-regulated actin-myosin system is involved in axon extension. To begin the process of forming neural circuits, new neurons first establish their polarity and extend their axon. Axon extension is guided and regulated by highly coordinated cytoskeletal dynamics. Here we demonstrate that in hippocampal neurons, the actin-binding protein caldesmon accumulates in distal axons, and its N-terminal interaction with myosin II enhances axon extension. In cortical neural progenitor cells, caldesmon knockdown suppresses axon extension and neuronal polarity. These results indicate that caldesmon is an important regulator of axon development.


Oncotarget | 2016

Myocardin-related transcription factor A (MRTF-A) activity-dependent cell adhesion is correlated to focal adhesion kinase (FAK) activity

Takayuki Kishi; Taira Mayanagi; Sadahiro Iwabuchi; Toshihide Akasaka; Kenji Sobue

The regulation of cell-substrate adhesion is tightly linked to the malignant phenotype of tumor cells and plays a role in their migration, invasion, and metastasis. Focal adhesions (FAs) are dynamic adhesion structures that anchor the cell to the extracellular matrix. Myocardin-related transcription factors (MRTFs), co-regulators of the serum response factor (SRF), regulate expression of a set of genes encoding actin cytoskeletal/FA-related proteins. Here we demonstrated that the forced expression of a constitutively active MRTF-A (CA-MRTF-A) in B16F10 melanoma cells induced the up-regulation of actin cytoskeletal and FA proteins, resulting in FA reorganization and the suppression of cell migration. Expression of CA-MRTF-A markedly increased phosphorylation of focal adhesion kinase (FAK) and paxillin, which are important components for FA dynamics. Notably, FAK activation was triggered by the clustering of up-regulated integrins. Our results revealed that the MRTF-SRF-dependent regulation of cell migration requires both the up-regulation of actin cytoskeletal/FA proteins and the integrin-mediated regulation of FA components via the FAK/Src pathway. We also demonstrated that activation of the MRTF-dependent transcription correlates FAK activation in various tumor cells. The elucidation of the correlation between MRTF and FAK activities would be an effective therapeutic target in focus of tumor cell migration.


The Journal of Neuroscience | 2015

PSD-Zip70 Deficiency Causes Prefrontal Hypofunction Associated with Glutamatergic Synapse Maturation Defects by Dysregulation of Rap2 Activity

Taira Mayanagi; Hiroki Yasuda; Kenji Sobue

Dysregulation of synapse formation and plasticity is closely related to the pathophysiology of psychiatric and neurodevelopmental disorders. The prefrontal cortex (PFC) is particularly important for executive functions such as working memory, cognition, and emotional control, which are impaired in the disorders. PSD-Zip70 (Lzts1/FEZ1) is a postsynaptic density (PSD) protein predominantly expressed in the frontal cortex, olfactory bulb, striatum, and hippocampus. Here we found that PSD-Zip70 knock-out (PSD-Zip70KO) mice exhibit working memory and cognitive defects, and enhanced anxiety-like behaviors. These abnormal behaviors are caused by impaired glutamatergic synapse transmission accompanied by tiny-headed immature dendritic spines in the PFC, due to aberrant Rap2 activation, which has roles in synapse formation and plasticity. PSD-Zip70 modulates the Rap2 activity by interacting with SPAR (spine-associated RapGAP) and PDZ-GEF1 (RapGEF) in the postsynapse. Furthermore, suppression of the aberrant Rap2 activation in the PFC rescued the behavioral defects in PSD-Zip70KO mice. Our data demonstrate a critical role for PSD-Zip70 in Rap2-dependent spine synapse development in the PFC and underscore the importance of this regulation in PFC-dependent behaviors. SIGNIFICANCE STATEMENT PSD-Zip70 deficiency causes behavioral defects in working memory and cognition, and enhanced anxiety due to prefrontal hypofunction. This study revealed that PSD-Zip70 plays essential roles in glutamatergic synapse maturation via modulation of the Rap2 activity in the PFC. PSD-Zip70 interacts with both SPAR (spine-associated RapGAP) and PDZ-GEF1 (RapGEF) and modulates the Rap2 activity in postsynaptic sites. Our results provide a novel Rap2-specific regulatory mechanism in synaptic maturation involving PSD-Zip70.

Collaboration


Dive into the Taira Mayanagi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akio Sakai

Iwate Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroshi Ichijo

Iwate Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kotaro Otsuka

Iwate Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge