Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Taiza H. Figueiredo is active.

Publication


Featured researches published by Taiza H. Figueiredo.


PLOS ONE | 2014

Reduced GABAergic inhibition in the basolateral amygdala and the development of anxiety-like behaviors after mild traumatic brain injury.

Camila P. Almeida-Suhett; Eric M. Prager; Volodymyr I. Pidoplichko; Taiza H. Figueiredo; Ann M. Marini; Zheng Li; Lee E. Eiden; Maria F.M. Braga

Traumatic brain injury (TBI) is a major public health concern affecting a large number of athletes and military personnel. Individuals suffering from a TBI risk developing anxiety disorders, yet the pathophysiological alterations that result in the development of anxiety disorders have not yet been identified. One region often damaged by a TBI is the basolateral amygdala (BLA); hyperactivity within the BLA is associated with increased expression of anxiety and fear, yet the functional alterations that lead to BLA hyperexcitability after TBI have not been identified. We assessed the functional alterations in inhibitory synaptic transmission in the BLA and one mechanism that modulates excitatory synaptic transmission, the α7 containing nicotinic acetylcholine receptor (α7-nAChR), after mTBI, to shed light on the mechanisms that contribute to increased anxiety-like behaviors. Seven and 30 days after a mild controlled cortical impact (CCI) injury, animals displayed significantly greater anxiety-like behavior. This was associated with a significant loss of GABAergic interneurons and significant reductions in the frequency and amplitude of spontaneous and miniature GABAA-receptor mediated inhibitory postsynaptic currents (IPSCs). Decreases in the mIPSC amplitude were associated with reduced surface expression of α1, β2, and γ2 GABAA receptor subunits. However, significant increases in the surface expression and current mediated by α7-nAChR, were observed, signifying increases in the excitability of principal neurons within the BLA. These results suggest that mTBI causes not only a significant reduction in inhibition in the BLA, but also an increase in neuronal excitability, which may contribute to hyperexcitability and the development of anxiety disorders.


Neuroscience | 2009

Pathological alterations in GABAergic interneurons and reduced tonic inhibition in the basolateral amygdala during epileptogenesis.

Brita Fritsch; Felicia Qashu; Taiza H. Figueiredo; Vassiliki Aroniadou-Anderjaska; Michael A. Rogawski; Maria F.M. Braga

An acute brain insult such as traumatic head/brain injury, stroke, or an episode of status epilepticus can trigger epileptogenesis, which, after a latent, seizure-free period, leads to epilepsy. The discovery of effective pharmacological interventions that can prevent the development of epilepsy requires knowledge of the alterations that occur during epileptogenesis in brain regions that play a central role in the induction and expression of epilepsy. In the present study, we investigated pathological alterations in GABAergic interneurons in the rat basolateral amygdala (BLA), and the functional impact of these alterations on inhibitory synaptic transmission, on days 7 to 10 after status epilepticus induced by kainic acid. Using design-based stereology combined with glutamic acid decarboxylase (GAD) 67 immunohistochemistry, we found a more extensive loss of GABAergic interneurons compared to the loss of principal cells. Fluoro-Jade C staining showed that neuronal degeneration was still ongoing. These alterations were accompanied by an increase in the levels of GAD and the alpha1 subunit of the GABA(A) receptor, and a reduction in the GluK1 (previously known as GluR5) subunit, as determined by Western blots. Whole-cell recordings from BLA pyramidal neurons showed a significant reduction in the frequency and amplitude of action potential-dependent spontaneous inhibitory postsynaptic currents (IPSCs), a reduced frequency but not amplitude of miniature IPSCs, and impairment in the modulation of IPSCs via GluK1-containing kainate receptors (GluK1Rs). Thus, in the BLA, GABAergic interneurons are more vulnerable to seizure-induced damage than principal cells. Surviving interneurons increase their expression of GAD and the alpha1 GABA(A) receptor subunit, but this does not compensate for the interneuronal loss; the result is a dramatic reduction of tonic inhibition in the BLA circuitry. As activation of GluK1Rs by ambient levels of glutamate facilitates GABA release, the reduced level and function of these receptors may contribute to the reduction of tonic inhibitory activity. These alterations at a relatively early stage of epileptogenesis may facilitate the progress towards the development of epilepsy.


Journal of Pharmacology and Experimental Therapeutics | 2011

The GluK1 (GluR5) Kainate/α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid Receptor Antagonist LY293558 Reduces Soman-Induced Seizures and Neuropathology

Taiza H. Figueiredo; Felicia Qashu; James P. Apland; Vassiliki Aroniadou-Anderjaska; Adriana P. Souza; Maria F.M. Braga

The possibility of mass exposure to nerve agents by a terrorist attack necessitates the availability of antidotes that can be effective against nerve agent toxicity even when administered at a relatively long latency after exposure, because medical assistance may not be immediately available. Nerve agents induce status epilepticus (SE), which can cause brain damage or death. Antagonists of kainate receptors that contain the GluK1 (formerly known as GluR5) subunit (GluK1Rs) are emerging as a new potential treatment for SE and epilepsy from animal research, whereas clinical trials to treat pain have shown that the GluK1/α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist LY293558 [(3S,4aR,6R,8aR)-6-[2-(1(2)H-tetrazole-5-yl)ethyl]decahydroisoquinoline-3-carboxylic acid] is safe and well tolerated. Therefore, we tested whether LY293558 is effective against soman-induced seizures and neuropathology, when administered 1 h after soman exposure, in rats. LY293558 stopped seizures induced by soman and reduced the total duration of SE, monitored by electroencephalographic recordings within a 24 h-period after exposure. In addition, LY293558 prevented neuronal loss in the basolateral amygdala (BLA) and the CA1 hippocampal area on both days 1 and 7 after soman exposure and reduced neuronal degeneration in the CA1, CA3, and hilar hippocampal regions, entorhinal cortex, amygdala, and neocortex on day 1 after exposure and in the CA1, CA3, amygdala, and neocortex on day 7 after exposure. It also prevented the delayed loss of glutamic acid decarboxylase-67 immuno-stained BLA interneurons on day 7 after exposure. LY293558 is a potential new emergency treatment for nerve agent exposure that can be expected to be effective against seizures and brain damage even with late administration.


Neurotoxicology | 2009

Primary brain targets of nerve agents: the role of the amygdala in comparison to the hippocampus.

Vassiliki Aroniadou-Anderjaska; Taiza H. Figueiredo; James P. Apland; Felicia Qashu; Maria F.M. Braga

Exposure to nerve agents and other organophosphorus acetylcholinesterases used in industry and agriculture can cause death, or brain damage, producing long-term cognitive and behavioral deficits. Brain damage is primarily caused by the intense seizure activity induced by these agents. Identifying the brain regions that respond most intensely to nerve agents, in terms of generating and spreading seizure activity, along with knowledge of the physiology and biochemistry of these regions, can facilitate the development of pharmacological treatments that will effectively control seizures even if administered when seizures are well underway. Here, we contrast the pathological (neuronal damage) and pathophysiological (neuronal activity) findings of responses to nerve agents in the amygdala and the hippocampus, the two brain structures that play a central role in the generation and spread of seizures. The evidence so far suggests that exposure to nerve agents causes significantly more damage in the amygdala than in the hippocampus. Furthermore, in in vitro brain slices, the amygdala generates prolonged, seizure-like neuronal discharges in response to the nerve agent soman, at a time when the hippocampus generates only interictal-like activity. In vivo experiments are now required to confirm the primary role that the amygdala seems to play in nerve agent-induced seizure generation.


The Journal of Neuroscience | 2014

ASIC1a Activation Enhances Inhibition in the Basolateral Amygdala and Reduces Anxiety

Volodymyr I. Pidoplichko; Vassiliki Aroniadou-Anderjaska; Eric M. Prager; Taiza H. Figueiredo; Camila P. Almeida-Suhett; Steven L. Miller; Maria F.M. Braga

The discovery that even small changes in extracellular acidity can alter the excitability of neuronal networks via activation of acid-sensing ion channels (ASICs) could have therapeutic application in a host of neurological and psychiatric illnesses. Recent evidence suggests that activation of ASIC1a, a subtype of ASICs that is widely distributed in the brain, is necessary for the expression of fear and anxiety. Antagonists of ASIC1a, therefore, have been proposed as a potential treatment for anxiety. The basolateral amygdala (BLA) is central to fear generation, and anxiety disorders are characterized by BLA hyperexcitability. To better understand the role of ASIC1a in anxiety, we attempted to provide a direct assessment of whether ASIC1a activation increases BLA excitability. In rat BLA slices, activation of ASIC1a by low pH or ammonium elicited inward currents in both interneurons and principal neurons, and increased spontaneous IPSCs recorded from principal cells significantly more than spontaneous EPSCs. Epileptiform activity induced by high potassium and low magnesium was suppressed by ammonium. Antagonism of ASIC1a decreased spontaneous IPSCs more than EPSCs, and increased the excitability of the BLA network, as reflected by the pronounced increase of evoked field potentials, suggesting that ASIC1a channels are active in the basal state. In vivo activation or blockade of ASIC1a in the BLA suppressed or increased, respectively, anxiety-like behavior. Thus, in the rat BLA, ASIC1a has an inhibitory and anxiolytic function. The discovery of positive ASIC1a modulators may hold promise for the treatment of anxiety disorders.


Neurotoxicology | 2013

Acetylcholinesterase inhibition in the basolateral amygdala plays a key role in the induction of status epilepticus after soman exposure.

Eric M. Prager; Vassiliki Aroniadou-Anderjaska; Camila P. Almeida-Suhett; Taiza H. Figueiredo; James P. Apland; Maria F.M. Braga

Exposure to nerve agents induces intense seizures (status epilepticus, SE), which cause brain damage or death. Identification of the brain regions that are critical for seizure initiation after nerve agent exposure, along with knowledge of the physiology of these regions, can facilitate the development of pretreatments and treatments that will successfully prevent or limit the development of seizures and brain damage. It is well-established that seizure initiation is due to excessive cholinergic activity triggered by the nerve agent-induced irreversible inhibition of acetylcholinesterase (AChE). Therefore, the reason that when animals are exposed to lethal doses of a nerve agent, a small proportion of these animals do not develop seizures, may have to do with failure of the nerve agent to inhibit AChE in brain areas that play a key role in seizure initiation and propagation. In the present study, we compared AChE activity in the basolateral amygdala (BLA), hippocampus, and piriform cortex of rats that developed SE (SE rats) after administration of the nerve agent soman (154μg/kg) to AChE activity in these brain regions of rats that received the same dose of soman but did not develop SE (no-SE rats). The levels of AChE activity were measured at the onset of SE in SE rats, 30min after soman administration in no-SE rats, as well as in controls which received saline in place of soman. In the control group, AChE activity was significantly higher in the BLA compared to the hippocampus and piriform cortex. Compared to controls, AChE activity was dramatically lower in the hippocampus and the piriform cortex of both the SE rats and the no-SE rats, but AChE activity in the BLA was reduced only in the SE rats. Consistent with the notion that soman-induced neuropathology is due to intense seizures, rather than due to a direct neurotoxic effect of soman, no-SE rats did not present any neuronal loss or degeneration, 7 days after exposure. The results suggest that inhibition of AChE activity in the BLA is necessary for the generation of seizures after nerve agent exposure, and provide strong support to the view that the amygdala is a key brain region for the induction of seizures by nerve agents.


Experimental Neurology | 2015

GABAergic interneuronal loss and reduced inhibitory synaptic transmission in the hippocampal CA1 region after mild traumatic brain injury

Camila P. Almeida-Suhett; Eric M. Prager; Volodymyr I. Pidoplichko; Taiza H. Figueiredo; Ann M. Marini; Zheng Li; Lee E. Eiden; Maria F.M. Braga

Patients that suffer mild traumatic brain injuries (mTBI) often develop cognitive impairments, including memory and learning deficits. The hippocampus shows a high susceptibility to mTBI-induced damage due to its anatomical localization and has been implicated in cognitive and neurological impairments after mTBI. However, it remains unknown whether mTBI cognitive impairments are a result of morphological and pathophysiological alterations occurring in the CA1 hippocampal region. We investigated whether mTBI induces morphological and pathophysiological alterations in the CA1 using the controlled cortical impact (CCI) model. Seven days after CCI, animals subjected to mTBI showed cognitive impairment in the passive avoidance test and deficits to long-term potentiation (LTP) of synaptic transmission. Deficiencies in inducing or maintaining LTP were likely due to an observed reduction in the activation of NMDA but not AMPA receptors. Significant reductions in the frequency and amplitude of spontaneous and miniature GABAA-receptor mediated inhibitory postsynaptic currents (IPSCs) were also observed 7 days after CCI. Design-based stereology revealed that although the total number of neurons was unaltered, the number of GABAergic interneurons is significantly reduced in the CA1 region 7 days after CCI. Additionally, the surface expression of α1, ß2/3, and γ2 subunits of the GABAA receptor were reduced, contributing to a reduced mIPSC frequency and amplitude, respectively. Together, these results suggest that mTBI causes a significant reduction in GABAergic inhibitory transmission and deficits to NMDA receptor mediated currents in the CA1, which may contribute to changes in hippocampal excitability and subsequent cognitive impairments after mTBI.


Journal of Pharmacology and Experimental Therapeutics | 2014

The Limitations of Diazepam as a Treatment for Nerve Agent-Induced Seizures and Neuropathology in Rats; Comparison with UBP302

James P. Apland; Vassiliki Aroniadou-Anderjaska; Taiza H. Figueiredo; Franco Rossetti; Steven L. Miller; Maria F.M. Braga

Exposure to nerve agents induces prolonged status epilepticus (SE), causing brain damage or death. Diazepam (DZP) is the current US Food and Drug Administration–approved drug for the cessation of nerve agent–induced SE. Here, we compared the efficacy of DZP with that of UBP302 [(S)-3-(2-carboxybenzyl)willardiine; an antagonist of the kainate receptors that contain the GluK1 subunit] against seizures, neuropathology, and behavioral deficits induced by soman in rats. DZP, administered 1 hour or 2 hours postexposure, terminated the SE, but seizures returned; thus, the total duration of SE within 24 hours after soman exposure was similar to (DZP at 1 hour) or longer than (DZP at 2 hours) that in the soman-exposed rats that did not receive the anticonvulsant. Compared with DZP, UBP302 stopped SE with a slower time course, but dramatically reduced the total duration of SE within 24 hours. Neuropathology and behavior were assessed in the groups that received anticonvulsant treatment 1 hour after exposure. UBP302, but not DZP, reduced neuronal degeneration in a number of brain regions, as well as neuronal loss in the basolateral amygdala and the CA1 hippocampal area, and prevented interneuronal loss in the basolateral amygdala. Anxiety-like behavior was assessed in the open field and by the acoustic startle response 30 days after soman exposure. The results showed that anxiety-like behavior was increased in the DZP-treated group and in the group that did not receive anticonvulsant treatment, but not in the UBP302-treated group. The results argue against the use of DZP for the treatment of nerve agent–induced seizures and brain damage and suggest that targeting GluK1-containing receptors is a more effective approach.


Neurotoxicology | 2015

Repeated systemic administration of the nutraceutical alpha-linolenic acid exerts neuroprotective efficacy, an antidepressant effect and improves cognitive performance when given after soman exposure

Hongna Pan; Tetsade Piermartiri; Jun Chen; John McDonough; Craig Oppel; Wafae Driwech; Kristin Winter; Emylee McFarland; Katelyn Black; Taiza H. Figueiredo; Neil E. Grunberg; Ann M. Marini

Exposure to nerve agents results in severe seizures or status epilepticus caused by the inhibition of acetylcholinesterase, a critical enzyme that breaks down acetylcholine to terminate neurotransmission. Prolonged seizures cause brain damage and can lead to long-term consequences. Current countermeasures are only modestly effective against the brain damage supporting interest in the evaluation of new and efficacious therapies. The nutraceutical alpha-linolenic acid (LIN) is an essential omega-3 polyunsaturated fatty acid that has a wide safety margin. Previous work showed that a single intravenous injection of alpha-linolenic acid (500 nmol/kg) administered before or after soman significantly protected against soman-induced brain damage when analyzed 24h after exposure. Here, we show that administration of three intravenous injections of alpha-linolenic acid over a 7 day period after soman significantly improved motor performance on the rotarod, enhanced memory retention, exerted an anti-depressant-like activity and increased animal survival. This dosing schedule significantly reduced soman-induced neuronal degeneration in four major vulnerable brain regions up to 21 days. Taken together, alpha-linolenic acid reduces the profound behavioral deficits induced by soman possibly by decreasing neuronal cell death, and increases animal survival.


Journal of Pharmacology and Experimental Therapeutics | 2013

Efficacy of the GluK1/AMPA Receptor Antagonist LY293558 Against Seizures and Neuropathology in a Soman-Exposure Model without Pretreatment and its Pharmacokinetics after Intramuscular Administration

James P. Apland; Vassiliki Aroniadou-Anderjaska; Taiza H. Figueiredo; Carol E. Green; Robert Swezey; Chun Yang; Felicia Qashu; Maria F.M. Braga

Control of brain seizures after exposure to nerve agents is imperative for the prevention of brain damage and death. Animal models of nerve agent exposure make use of pretreatments, or medication administered within 1 minute after exposure, in order to prevent rapid death from peripheral toxic effects and respiratory failure, which then allows the testing of anticonvulsant compounds. However, in a real-case scenario of an unexpected attack with nerve agents, pretreatment would not be possible, and medical assistance may not be available immediately. To determine if control of seizures and survival are still possible without pretreatment or immediate pharmacologic intervention, we studied the anticonvulsant efficacy of the GluK1 (GluR5)/α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist (3S,4aR,6R,8aR)-6-[2-(1(2)H-tetrazole-5-yl)ethyl]decahydroisoquinoline-3-carboxylic acid (LY293558) in rats that did not receive any treatment until 20 minutes after exposure to the nerve agent soman. We injected LY293558 intramuscularly, as this would be the most likely route of administration to humans. LY293558 (15 mg/kg), injected along with atropine and the oxime HI-6 at 20 minutes after soman exposure, stopped seizures and increased survival rate from 64% to 100%. LY293558 also prevented neuronal loss in the amygdala and hippocampus, and reduced neurodegeneration in a number of brain regions studied 7 days after soman exposure. Analysis of the LY293558 pharmacokinetics after intramuscular administration showed that this compound readily crosses the blood–brain barrier. There was good correspondence between the time course of seizure suppression by LY293558 and the brain levels of the compound.

Collaboration


Dive into the Taiza H. Figueiredo's collaboration.

Top Co-Authors

Avatar

Maria F.M. Braga

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Vassiliki Aroniadou-Anderjaska

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

James P. Apland

United States Army Medical Research Institute of Chemical Defense

View shared research outputs
Top Co-Authors

Avatar

Eric M. Prager

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Volodymyr I. Pidoplichko

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Camila P. Almeida-Suhett

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Ann M. Marini

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Felicia Qashu

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Steven L. Miller

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Cara H. Olsen

Uniformed Services University of the Health Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge