Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Taizo Mori is active.

Publication


Featured researches published by Taizo Mori.


Advanced Materials | 2012

Mechanical Control of Nanomaterials and Nanosystems

Katsuhiko Ariga; Taizo Mori; Jonathan P. Hill

In situations of power outage or shortage, such as periods just following a seismic disaster, the only reliable power source available is the most fundamental of forces i.e., manual mechanical stimuli. Although there are many macroscopic mechanical tools, mechanical control of nanomaterials and nanosystems has not been an easy subject to develop even by using advanced nanotechnological concepts. However, this challenge has now become a hot topic and many new ideas and strategies have been proposed recently. This report summarizes recent research examples of mechanical control of nanomaterials and nanosystems. Creation of macroscopic mechanical outputs by efficient accumulation of molecular-level phenomena is first briefly introduced. We will then introduce the main subject: control of molecular systems by macroscopic mechanical stimuli. The research described is categorized according to the respective areas of mechanical control of molecular structure, molecular orientation, molecular interaction including cleavage and healing, and biological and micron-level phenomena. Finally, we will introduce two more advanced approaches, namely, mechanical strategies for microdevice fabrication and mechanical control of molecular machines. As mechanical forces are much more reliable and widely applicable than other stimuli, we believe that development of mechanically responsive nanomaterials and nanosystems will make a significant contribution to fundamental improvements in our lifestyles and help to maintain and stabilize our society.


Advanced Materials | 2013

25th Anniversary Article: What Can Be Done with the Langmuir-Blodgett Method? Recent Developments and its Critical Role in Materials Science

Katsuhiko Ariga; Yusuke Yamauchi; Taizo Mori; Jonathan P. Hill

The Langmuir-Blodgett (LB) technique is known as an elegant method for fabrication of well-defined layered structures with molecular level precision. Since its discovery the LB method has made an indispensable contribution to surface science, physical chemistry, materials chemistry and nanotechnology. However, recent trends in research might suggest the decline of the LB method as alternate methods for film fabrication such as layer-by-layer (LbL) assembly have emerged. Is LB film technology obsolete? This review is presented in order to challenge this preposterous question. In this review, we summarize recent research on LB and related methods including (i) advanced design for LB films, (ii) LB film as a medium for supramolecular chemistry, (iii) LB technique for nanofabrication and (iv) LB involving advanced nanomaterials. Finally, a comparison between LB and LbL techniques is made. The latter reveals the crucial role played by LB techniques in basic surface science, current advanced material sciences and nanotechnologies.


Physical Chemistry Chemical Physics | 2013

Amphiphile nanoarchitectonics: from basic physical chemistry to advanced applications

Muruganathan Ramanathan; Lok Kumar Shrestha; Taizo Mori; Qingmin Ji; Jonathan P. Hill; Katsuhiko Ariga

Amphiphiles, either synthetic or natural, are structurally simple molecules with the unprecedented capacity to self-assemble into complex, hierarchical geometries in nanospace. Effective self-assembly processes of amphiphiles are often used to mimic biological systems, such as assembly of lipids and proteins, which has paved a way for bottom-up nanotechnology with bio-like advanced functions. Recent developments in nanostructure formation combine simple processes of assembly with the more advanced concept of nanoarchitectonics. In this perspective, we summarize research on self-assembly of amphiphilic molecules such as lipids, surfactants or block copolymers that are a focus of interest for many colloid, polymer, and materials scientists and which have become increasingly important in emerging nanotechnology and practical applications, latter of which are often accomplished by amphiphile-like polymers. Because the fundamental science of amphiphiles was initially developed for their solution assembly then transferred to assemblies on surfaces as a development of nanotechnological techniques, this perspective attempts to mirror this development by introducing solution systems and progressing to interfacial systems, which are roughly categorized as (i) basic properties of amphiphiles, (ii) self-assembly of amphiphiles in bulk phases, (iii) assembly on static surfaces, (iv) assembly at dynamic interfaces, and (v) advanced topics from simulation to application. This progression also represents the evolution of amphiphile science and technology from simple assemblies to advanced assemblies to nanoarchitectonics.


Advances in Colloid and Interface Science | 2010

Two-dimensional nanoarchitectonics based on self-assembly.

Katsuhiko Ariga; Michael V. Lee; Taizo Mori; Xiao-Yan Yu; Jonathan P. Hill

Top-down nanofabrication techniques, especially photolithography, have advanced nanotechnology to a point where system-process integration with bottom-up self-assembly is now required. Because most lithographic techniques are constrained to two-dimensional planes, investigation of integrated self-assembly systems should focus on two-dimensional organization. In this review, research on two-dimensional nanoartchitectonics is classified and summarized according to the type of interface used. Pattern formation following deposition of vaporized molecules onto a solid surface can be analyzed with high structural precision using scanning probe microscopy under ultra high vacuum. Transitions of adsorbed phases and adjustment of pattern mismatch by conformational changes of adsorbed molecules are discussed, in addition to the forces constraining pattern formation, i.e., two-dimensional hydrogen bond networks, van der Waals forces, and molecule-surface interactions. Molecular deposition at a liquid-solid interface broadens the range of molecules that can be investigated. The more complex molecules discussed in this work are C(60)-fullerene derivatives and designer DNA strands. Gas-liquid interfaces, e.g. between air and water, allow dynamic formations that can adjust to molecular conformational changes. In this case, any resulting patterns can be modulated by varying conditions macroscopically. Using flexible molecules at the fluid air-water interface also permits dynamic operation of molecular machines by macroscopic mechanical motion, thus enabling, hand-operated nanotechnology.


Chemistry-an Asian Journal | 2013

Fullerene Nanoarchitectonics: From Zero to Higher Dimensions

Lok Kumar Shrestha; Qingmin Ji; Taizo Mori; Kun’ichi Miyazawa; Yusuke Yamauchi; Jonathan P. Hill; Katsuhiko Ariga

The strategic design of nanostructured materials, the properties of which could be controlled across different length scales and which, at the same time, could be used as building blocks for the construction of devices and functional systems into new technological platforms that are based on sustainable processes, is an important issue in bottom-up nanotechnology.Such strategic design has enabled the fabrication of materials by using convergent bottom-up and top-down strategies. Recent developments in the assembly of functional fullerene (C60) molecules, either in bulk or at interfaces, have allowed the production of shape-controlled nano-to-microsized objects that possess excellent optoelectronic properties, thus enabling the fabrication of optoelectronic devices. Because fullerene molecules can be regarded as an ideal zero-dimensional (0D) building units with attractive functions, the construction of higher-dimensional objects, that is, 1D, 2D, and 3D nanomaterials may realize important aspects of nanoarchitectonics. This Focus Review summarizes the recent developments in the production of nanostructured fullerenes and techniques for the elaboration of fullerene nanomaterials into hierarchic structures.


Journal of the American Chemical Society | 2010

Mechanical Tuning of Molecular Recognition To Discriminate the Single-Methyl-Group Difference between Thymine and Uracil

Taizo Mori; Ken Okamoto; Hiroshi Endo; Jonathan P. Hill; Satoshi Shinoda; Miki Matsukura; Hiroshi Tsukube; Yasumasa Suzuki; Yasumasa Kanekiyo; Katsuhiko Ariga

Construction of enzyme-like artificial cavities is a complex and challenging subject. Rather than synthesizing complicated host molecules, we have proposed mechanical adaptation of relatively simple hosts within dynamic media to determine the optimum conformation for molecular recognition. Here we have applied this concept to one of the most challenging biomolecular recognition problems, i.e., that of discriminating thymine from uracil. We synthesized the novel cholesterol-armed triazacyclononane as a host molecule and subjected it to structural tuning by compression of its Langmuir monolayers in the absence and in the presence of Li(+) cations in the subphase. Experimental results confirm that the monolayer of triazacyclononane host selectively recognizes uracil over adenine (ca. 7 times based on the binding constant) and thymine (ca. 64 times) under optimized conditions ([LiCl] = 10 mM at surface pressure of 35 mN m(-1)). The concept of mechanical tuning of a host structure for optimization of molecular recognition offers a novel methodology in host-guest chemistry as an alternative to the more traditional molecular design strategies.


Journal of the American Chemical Society | 2014

Aligned 1-D nanorods of a π-gelator exhibit molecular orientation and excitation energy transport different from entangled fiber networks.

Keita Sakakibara; Parayalil Chithra; Bidisa Das; Taizo Mori; Misaho Akada; Jan Labuta; Tohru Tsuruoka; Subrata Maji; Seiichi Furumi; Lok Kumar Shrestha; Jonathan P. Hill; Somobrata Acharya; Katsuhiko Ariga; Ayyappanpillai Ajayaghosh

Linear π-gelators self-assemble into entangled fibers in which the molecules are arranged perpendicular to the fiber long axis. However, orientation of gelator molecules in a direction parallel to the long axes of the one-dimensional (1-D) structures remains challenging. Herein we demonstrate that, at the air-water interface, an oligo(p-phenylenevinylene)-derived π-gelator forms aligned nanorods of 340 ± 120 nm length and 34 ± 5 nm width, in which the gelator molecules are reoriented parallel to the long axis of the rods. The orientation change of the molecules results in distinct excited-state properties upon local photoexcitation, as evidenced by near-field scanning optical microscopy. A detailed understanding of the mechanism by which excitation energy migrates through these 1-D molecular assemblies might help in the design of supramolecular structures with improved charge-transport properties.


Chemical Science | 2011

Control of nano/molecular systems by application of macroscopic mechanical stimuli

Katsuhiko Ariga; Taizo Mori; Jonathan P. Hill

The potential usefulness and importance of nanomaterials are now well recognized. However, currently available synthetic nanomaterials are generally used in their bulk form and control of nanosystems at the nanoscale on demand has not been realized. To solve this problem, the use of macroscopic mechanical stimuli to drive nano/molecular systems is considered to be a key technique. If direct manipulation of nano/molecular systems could be achieved by applying macroscopic mechanical stimuli, we might exert control over nanotechnological systems according to our needs. In this perspective, recent methodologies for controlling nano/molecular systems through application of macroscopic mechanical forces are introduced. Application of mechanical processes is known to affect some molecular association and chemical reactions, causing variation of optical properties, sometimes resulting in self-healing functions or capture and release of molecules under macroscopic mechanical motions. We might be able to realize the great potential of nanoscale and molecular systems by accessing nanoscience and nanotechnology from the macroscopic world.


Chemical Record | 2008

Helical polyacetylene--origins and synthesis.

Kazuo Akagi; Taizo Mori

We present the origins and synthesis of helical polyacetylene (H-PA) by focusing on its peculiar spiral morphology. Interfacial polymerization of acetylene was carried out in an asymmetric reaction field consisting of chiral nematic liquid crystal (N*-LC) and Ziegler-Natta catalyst. As the N*-LC is composed of nematic liquid crystal and a chiral compound such as a binaphthyl derivative with either the R- or S-configuration, the screw directions of the polyacetylene chain and fibril bundle--and even the spiral morphology--are rigorously controlled by the chirality of the selected compound. Interestingly, the screw directions of the fibril and the bundle in H-PA were found to be opposite to that of N*-LC. It is worthwhile to emphasize that the hierarchical spiral morphology involving the primary to higher order structure is generated in a synthetic polymer such as polyacetylene by using N*-LC as an asymmetric polymerization solvent.


Angewandte Chemie | 2015

Mechanochemical Tuning of the Binaphthyl Conformation at the Air–Water Interface†

Daisuke Ishikawa; Taizo Mori; Yusuke Yonamine; Waka Nakanishi; David L. Cheung; Jonathan P. Hill; Katsuhiko Ariga

Gradual and reversible tuning of the torsion angle of an amphiphilic chiral binaphthyl, from -90° to -80°, was achieved by application of a mechanical force to its molecular monolayer at the air-water interface. This 2D interface was an ideal location for mechanochemistry for molecular tuning and its experimental and theoretical analysis, since this lowered dimension enables high orientation of molecules and large variation in the area. A small mechanical energy (<1 kcal mol(-1) ) was applied to the monolayer, causing a large variation (>50 %) in the area of the monolayer and modification of binaphthyl conformation. Single-molecule simulations revealed that mechanical energy was converted proportionally to torsional energy. Molecular dynamics simulations of the monolayer indicated that the global average torsion angle of a monolayer was gradually shifted.

Collaboration


Dive into the Taizo Mori's collaboration.

Top Co-Authors

Avatar

Katsuhiko Ariga

National Institute for Materials Science

View shared research outputs
Top Co-Authors

Avatar

Jonathan P. Hill

National Institute for Materials Science

View shared research outputs
Top Co-Authors

Avatar

Hideki Sakai

Tokyo University of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lok Kumar Shrestha

National Institute for Materials Science

View shared research outputs
Top Co-Authors

Avatar

Waka Nakanishi

National Institute for Materials Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masaaki Akamatsu

Tokyo University of Science

View shared research outputs
Top Co-Authors

Avatar

Masahiko Abe

Tokyo University of Science

View shared research outputs
Top Co-Authors

Avatar

Qingmin Ji

National Institute for Materials Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge