Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tak-Ming Chan is active.

Publication


Featured researches published by Tak-Ming Chan.


Clinical Chemistry | 2015

The Landscape of MicroRNA, Piwi-Interacting RNA, and Circular RNA in Human Saliva

Jae Hoon Bahn; Qing Zhang; Feng Li; Tak-Ming Chan; Xianzhi Lin; Yong Kim; David T. Wong; Xinshu Xiao

BACKGROUND Extracellular RNAs (exRNAs) in human body fluids are emerging as effective biomarkers for detection of diseases. Saliva, as the most accessible and noninvasive body fluid, has been shown to harbor exRNA biomarkers for several human diseases. However, the entire spectrum of exRNA from saliva has not been fully characterized. METHODS Using high-throughput RNA sequencing (RNA-Seq), we conducted an in-depth bioinformatic analysis of noncoding RNAs (ncRNAs) in human cell-free saliva (CFS) from healthy individuals, with a focus on microRNAs (miRNAs), piwi-interacting RNAs (piRNAs), and circular RNAs (circRNAs). RESULTS Our data demonstrated robust reproducibility of miRNA and piRNA profiles across individuals. Furthermore, individual variability of these salivary RNA species was highly similar to those in other body fluids or cellular samples, despite the direct exposure of saliva to environmental impacts. By comparative analysis of >90 RNA-Seq data sets of different origins, we observed that piRNAs were surprisingly abundant in CFS compared with other body fluid or intracellular samples, with expression levels in CFS comparable to those found in embryonic stem cells and skin cells. Conversely, miRNA expression profiles in CFS were highly similar to those in serum and cerebrospinal fluid. Using a customized bioinformatics method, we identified >400 circRNAs in CFS. These data represent the first global characterization and experimental validation of circRNAs in any type of extracellular body fluid. CONCLUSIONS Our study provides a comprehensive landscape of ncRNA species in human saliva that will facilitate further biomarker discoveries and lay a foundation for future studies related to ncRNAs in human saliva.


Pattern Recognition Letters | 2009

Neighbor embedding based super-resolution algorithm through edge detection and feature selection

Tak-Ming Chan; Junping Zhang; Jian Pu; Hua Huang

Assuming that the local geometry of low-resolution image patches is similar to that of the high-resolution counterparts, neighbor embedding based super-resolution methods learn a high-resolution image from one or more low-resolution input images by embedding its patches optimally with training ones. However, their performance suffers from inappropriate choices of features, neighborhood sizes and training patches. To address the issues, we propose an extended Neighbor embedding based super-resolution through edge detection and Feature Selection (henceforth NeedFS). Three major contributions of NeedFS are: (1) A new combination of features are proposed, which preserve edges and smoothen color regions better; (2) the training patches are learned discriminately with different neighborhood sizes based on edge detection; (3) only those edge training patches are bootstrapped to provide extra useful information with least redundancy. Experiments show that NeedFS performs better in both quantitative and qualitative evaluation. NeedFS is also robust even with a very limited training set and thus is promising for real applications.


Bioinformatics | 2008

TFBS identification based on genetic algorithm with combined representations and adaptive post-processing

Tak-Ming Chan; Kwong-Sak Leung; Kin-Hong Lee

MOTIVATION Identification of transcription factor binding sites (TFBSs) plays an important role in deciphering the mechanisms of gene regulation. Recently, GAME, a Genetic Algorithm (GA)-based approach with iterative post-processing, has shown superior performance in TFBS identification. However, the basic GA in GAME is not elaborately designed, and may be trapped in local optima in real problems. The feature operators are only applied in the post-processing, but the final performance heavily depends on the GA output. Hence, both effectiveness and efficiency of the overall algorithm can be improved by introducing more advanced representations and novel operators in the GA, as well as designing the post-processing in an adaptive way. RESULTS We propose a novel framework GALF-P, consisting of Genetic Algorithm with Local Filtering (GALF) and adaptive post-processing techniques (-P), to achieve both effectiveness and efficiency for TFBS identification. GALF combines the position-led and consensus-led representations used separately in current GAs and employs a novel local filtering operator to get rid of false positives within an individual efficiently during the evolutionary process in the GA. Pre-selection is used to maintain diversity and avoid local optima. Post-processing with adaptive adding and removing is developed to handle general cases with arbitrary numbers of instances per sequence. GALF-P shows superior performance to GAME, MEME, BioProspector and BioOptimizer on synthetic datasets with difficult scenarios and real test datasets. GALF-P is also more robust and reliable when further compared with GAME, the current state-of-the-art approach. AVAILABILITY http://www.cse.cuhk.edu.hk/~tmchan/GALFP/.


BMC Bioinformatics | 2013

Sparse logistic regression with a L1/2 penalty for gene selection in cancer classification

Yong Liang; Cheng Liu; Xin-Ze Luan; Kwong-Sak Leung; Tak-Ming Chan; Zongben Xu; Hai Zhang

BackgroundMicroarray technology is widely used in cancer diagnosis. Successfully identifying gene biomarkers will significantly help to classify different cancer types and improve the prediction accuracy. The regularization approach is one of the effective methods for gene selection in microarray data, which generally contain a large number of genes and have a small number of samples. In recent years, various approaches have been developed for gene selection of microarray data. Generally, they are divided into three categories: filter, wrapper and embedded methods. Regularization methods are an important embedded technique and perform both continuous shrinkage and automatic gene selection simultaneously. Recently, there is growing interest in applying the regularization techniques in gene selection. The popular regularization technique is Lasso (L1), and many L1 type regularization terms have been proposed in the recent years. Theoretically, the Lq type regularization with the lower value of q would lead to better solutions with more sparsity. Moreover, the L1/2 regularization can be taken as a representative of Lq (0 < q < 1) regularizations and has been demonstrated many attractive properties.ResultsIn this work, we investigate a sparse logistic regression with the L1/2 penalty for gene selection in cancer classification problems, and propose a coordinate descent algorithm with a new univariate half thresholding operator to solve the L1/2 penalized logistic regression. Experimental results on artificial and microarray data demonstrate the effectiveness of our proposed approach compared with other regularization methods. Especially, for 4 publicly available gene expression datasets, the L1/2 regularization method achieved its success using only about 2 to 14 predictors (genes), compared to about 6 to 38 genes for ordinary L1 and elastic net regularization approaches.ConclusionsFrom our evaluations, it is clear that the sparse logistic regression with the L1/2 penalty achieves higher classification accuracy than those of ordinary L1 and elastic net regularization approaches, while fewer but informative genes are selected. This is an important consideration for screening and diagnostic applications, where the goal is often to develop an accurate test using as few features as possible in order to control cost. Therefore, the sparse logistic regression with the L1/2 penalty is effective technique for gene selection in real classification problems.


Nucleic Acids Research | 2010

Discovering protein–DNA binding sequence patterns using association rule mining

Kwong-Sak Leung; Ka-Chun Wong; Tak-Ming Chan; Man-Hon Wong; Kin-Hong Lee; Chi-Kong Lau; Stephen Kwok-Wing Tsui

Protein–DNA bindings between transcription factors (TFs) and transcription factor binding sites (TFBSs) play an essential role in transcriptional regulation. Over the past decades, significant efforts have been made to study the principles for protein–DNA bindings. However, it is considered that there are no simple one-to-one rules between amino acids and nucleotides. Many methods impose complicated features beyond sequence patterns. Protein-DNA bindings are formed from associated amino acid and nucleotide sequence pairs, which determine many functional characteristics. Therefore, it is desirable to investigate associated sequence patterns between TFs and TFBSs. With increasing computational power, availability of massive experimental databases on DNA and proteins, and mature data mining techniques, we propose a framework to discover associated TF–TFBS binding sequence patterns in the most explicit and interpretable form from TRANSFAC. The framework is based on association rule mining with Apriori algorithm. The patterns found are evaluated by quantitative measurements at several levels on TRANSFAC. With further independent verifications from literatures, Protein Data Bank and homology modeling, there are strong evidences that the patterns discovered reveal real TF–TFBS bindings across different TFs and TFBSs, which can drive for further knowledge to better understand TF–TFBS bindings.


Nucleic Acids Research | 2013

DNA motif elucidation using belief propagation

Ka-Chun Wong; Tak-Ming Chan; Chengbin Peng; Yue Li; Zhaolei Zhang

Protein-binding microarray (PBM) is a high-throughout platform that can measure the DNA-binding preference of a protein in a comprehensive and unbiased manner. A typical PBM experiment can measure binding signal intensities of a protein to all the possible DNA k-mers (k = 8 ∼10); such comprehensive binding affinity data usually need to be reduced and represented as motif models before they can be further analyzed and applied. Since proteins can often bind to DNA in multiple modes, one of the major challenges is to decompose the comprehensive affinity data into multimodal motif representations. Here, we describe a new algorithm that uses Hidden Markov Models (HMMs) and can derive precise and multimodal motifs using belief propagations. We describe an HMM-based approach using belief propagations (kmerHMM), which accepts and preprocesses PBM probe raw data into median-binding intensities of individual k-mers. The k-mers are ranked and aligned for training an HMM as the underlying motif representation. Multiple motifs are then extracted from the HMM using belief propagations. Comparisons of kmerHMM with other leading methods on several data sets demonstrated its effectiveness and uniqueness. Especially, it achieved the best performance on more than half of the data sets. In addition, the multiple binding modes derived by kmerHMM are biologically meaningful and will be useful in interpreting other genome-wide data such as those generated from ChIP-seq. The executables and source codes are available at the authors’ websites: e.g. http://www.cs.toronto.edu/∼wkc/kmerHMM.


Apoptosis | 2012

Apoptosis induced by 1,3,6,7-tetrahydroxyxanthone in Hepatocellular carcinoma and proteomic analysis

Wei ming Fu; Jin Fang Zhang; Hua Wang; Hong Sheng Tan; Wei Mao Wang; Shih-Chi Chen; Xiao-Feng Zhu; Tak-Ming Chan; Ching Man Tse; Kwong-Sak Leung; Gang Lu; Hong-Xi Xu; Hsiang-Fu Kung

Gamboge is a traditional Chinese medicine and our previous study showed that gambogic acid and gambogenic acid suppress the proliferation of HCC cells. In the present study, another active component, 1,3,6,7-tetrahydroxyxanthone (TTA), was identified to effectively suppress HCC cell growth. In addition, our Hoechst-PI staining and flow cytometry analyses indicated that TTA induced apoptosis in HCC cells. In order to identify the targets of TTA in HCC cells, a two-dimensional gel electrophoresis was performed, and proteins in different expressions were identified by MALDA-TOF MS and MS/MS analyses. In summary, eighteen proteins with different expressions were identified in which twelve were up-regulated and six were down-regulated. Among them, the four most distinctively expressed proteins were further studied and validated by western blotting. The β-tubulin and translationally controlled tumor protein were decreased while the 14-3-3σ and P16 protein expressions were up-regulated. In addition, TTA suppressed tumorigenesis partially through P16-pRb signaling. 14-3-3σ silence reversed the suppressive effect of cell growth and apoptosis induced by introducing TTA. In conclusion, TTA effectively suppressed cell growth through, at least partially, up-regulation of P16 and 14-3-3σ.


Journal of Proteomics | 2012

Heat shock protein 27 mediates the effect of 1,3,5-trihydroxy-13,13-dimethyl-2H-pyran [7,6-b] xanthone on mitochondrial apoptosis in hepatocellular carcinoma.

Wei ming Fu; Jin Fang Zhang; Hua Wang; Zhi chao Xi; Wei Mao Wang; Peng Zhuang; Xiao Zhu; Shih-Chi Chen; Tak-Ming Chan; Kwong-Sak Leung; Gang Lu; Hong-Xi Xu; Hsiang-Fu Kung

Hepatocellular carcinoma (HCC) is a global public health problem which causes approximately 500,000 deaths annually. Considering that the limited therapeutic options for HCC, novel therapeutic targets and drugs are urgently needed. In this study, we discovered that 1,3,5-trihydroxy-13,13-dimethyl-2H-pyran [7,6-b] xanthone (TDP), isolated from the traditional Chinese medicinal herb, Garcinia oblongifolia, effectively inhibited cell growth and induced the caspase-dependent mitochondrial apoptosis in HCC. A two-dimensional gel electrophoresis and mass spectrometry-based comparative proteomics were performed to find the molecular targets of TDP in HCC cells. Eighteen proteins were identified as differently expressed, with Hsp27 protein being one of the most significantly down-regulated proteins induced by TDP. In addition, the following gain- and loss-of-function studies indicated that Hsp27 mediates mitochondrial apoptosis induced by TDP. Furthermore, a nude mice model also demonstrated the suppressive effect of TDP on HCC. Our study suggests that TDP plays apoptosis-inducing roles by strongly suppressing the Hsp27 expression that is specifically associated with the mitochondrial death of the caspase-dependent pathway. In conclusion, TDP may be a potential anti-cancer drug candidate, especially to cancers with an abnormally high expression of Hsp27.


international conference on biometrics | 2006

An improved super-resolution with manifold learning and histogram matching

Tak-Ming Chan; Junping Zhang

Biometric Person Authentication such as face, fingerprint, palmprint and signature depends on the quality of image processing. When it needs to be done under a low-resolution image, the accuracy will be impaired. So how to recover the lost information from downsampled images is important for both authentication and preprocessing. Based on Super-Resolution through Neighbor Embedding algorithm and histogram matching, we propose an improved super-resolution approach to choose more reasonable training images. First, the training image are selected by histogram matching. Second, neighbor embedding algorithm is employed to recover the high-resolution image. Experiments in several images show that our improved super-resolution approach is promising for potential applications such as low-resolution mobile phone or CCTV (Closed Circuit Television) image person authentication.


BMC Bioinformatics | 2009

Discovering multiple realistic TFBS motifs based on a generalized model

Tak-Ming Chan; Gang Li; Kwong-Sak Leung; Kin-Hong Lee

BackgroundIdentification of transcription factor binding sites (TFBSs) is a central problem in Bioinformatics on gene regulation. de novo motif discovery serves as a promising way to predict and better understand TFBSs for biological verifications. Real TFBSs of a motif may vary in their widths and their conservation degrees within a certain range. Deciding a single motif width by existing models may be biased and misleading. Additionally, multiple, possibly overlapping, candidate motifs are desired and necessary for biological verification in practice. However, current techniques either prohibit overlapping TFBSs or lack explicit control of different motifs.ResultsWe propose a new generalized model to tackle the motif widths by considering and evaluating a width range of interest simultaneously, which should better address the width uncertainty. Moreover, a meta-convergence framework for genetic algorithms (GAs), is proposed to provide multiple overlapping optimal motifs simultaneously in an effective and flexible way. Users can easily specify the difference amongst expected motif kinds via similarity test. Incorporating Genetic Algorithm with Local Filtering (GALF) for searching, the new GALF-G (G for generalized) algorithm is proposed based on the generalized model and meta-convergence framework.ConclusionGALF-G was tested extensively on over 970 synthetic, real and benchmark datasets, and is usually better than the state-of-the-art methods. The range model shows an increase in sensitivity compared with the single-width ones, while providing competitive precisions on the E. coli benchmark. Effectiveness can be maintained even using a very small population, exhibiting very competitive efficiency. In discovering multiple overlapping motifs in a real liver-specific dataset, GALF-G outperforms MEME by up to 73% in overall F- scores. GALF-G also helps to discover an additional motif which has probably not been annotated in the dataset. http://www.cse.cuhk.edu.hk/%7Etmchan/GALFG/

Collaboration


Dive into the Tak-Ming Chan's collaboration.

Top Co-Authors

Avatar

Kwong-Sak Leung

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Kin-Hong Lee

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Hai Zhang

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Zongben Xu

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Man Hon Wong

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Ka-Chun Wong

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Leung-Yau Lo

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Xinshu Xiao

University of California

View shared research outputs
Top Co-Authors

Avatar

Gang Li

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Stephen Kwok-Wing Tsui

The Chinese University of Hong Kong

View shared research outputs
Researchain Logo
Decentralizing Knowledge