Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tak Sum Cheng is active.

Publication


Featured researches published by Tak Sum Cheng.


Arthritis Research & Therapy | 2013

Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes

Guangyi Li; Jimin Yin; Junjie Gao; Tak Sum Cheng; Nathan J. Pavlos; Changqing Zhang; Ming H. Zheng

Osteoarthritis (OA) is a major cause of disability in the adult population. As a progressive degenerative joint disorder, OA is characterized by cartilage damage, changes in the subchondral bone, osteophyte formation, muscle weakness, and inflammation of the synovium tissue and tendon. Although OA has long been viewed as a primary disorder of articular cartilage, subchondral bone is attracting increasing attention. It is commonly reported to play a vital role in the pathogenesis of OA. Subchondral bone sclerosis, together with progressive cartilage degradation, is widely considered as a hallmark of OA. Despite the increase in bone volume fraction, subchondral bone is hypomineralized, due to abnormal bone remodeling. Some histopathological changes in the subchondral bone have also been detected, including microdamage, bone marrow edema-like lesions and bone cysts. This review summarizes basic features of the osteochondral junction, which comprises subchondral bone and articular cartilage. Importantly, we discuss risk factors influencing subchondral bone integrity. We also focus on the microarchitectural and histopathological changes of subchondral bone in OA, and provide an overview of their potential contribution to the progression of OA. A hypothetical model for the pathogenesis of OA is proposed.


The International Journal of Biochemistry & Cell Biology | 2012

V-ATPases in osteoclasts: Structure, function and potential inhibitors of bone resorption

An Qin; Tak Sum Cheng; Nathan J. Pavlos; Zhen Lin; Kerong Dai; Ming Zheng

The vacuolar-type H(+)-ATPase (V-ATPase) proton pump is a macromolecular complex composed of at least 14 subunits organized into two functional domains, V(1) and V(0). The complex is located on the ruffled border plasma membrane of bone-resorbing osteoclasts, mediating extracellular acidification for bone demineralization during bone resorption. Genetic studies from mice to man implicate a critical role for V-ATPase subunits in osteoclast-related diseases including osteopetrosis and osteoporosis. Thus, the V-ATPase complex is a potential molecular target for the development of novel anti-resorptive agents useful for the treatment of osteolytic diseases. Here, we review the current structure and function of V-ATPase subunits, emphasizing their exquisite roles in osteoclastic function. In addition, we compare several distinct classes of V-ATPase inhibitors with specific inhibitory effects on osteoclasts. Understanding the structure-function relationship of the osteoclast V-ATPase may lead to the development of osteoclast-specific V-ATPase inhibitors that may serve as alternative therapies for the treatment of osteolytic diseases.


PLOS ONE | 2012

Prevention of Wear Particle-Induced Osteolysis by a Novel V-ATPase Inhibitor Saliphenylhalamide through Inhibition of Osteoclast Bone Resorption

An Qin; Tak Sum Cheng; Zhen Lin; Lei Cao; Shek Man Chim; Nathan J. Pavlos; Jiake Xu; Minghao Zheng; Kerong Dai

Wear particle-induced peri-implant loosening (Aseptic prosthetic loosening) is one of the most common causes of total joint arthroplasty. It is well established that extensive bone destruction (osteolysis) by osteoclasts is responsible for wear particle-induced peri-implant loosening. Thus, inhibition of osteoclastic bone resorption should prevent wear particle induced osteolysis and may serve as a potential therapeutic avenue for prosthetic loosening. Here, we demonstrate for the first time that saliphenylhalamide, a new V-ATPase inhibitor attenuates wear particle-induced osteolysis in a mouse calvarial model. In vitro biochemical and morphological assays revealed that the inhibition of osteolysis is partially attributed to a disruption in osteoclast acidification and polarization, both a prerequisite for osteoclast bone resorption. Interestingly, the V-ATPase inhibitor also impaired osteoclast differentiation via the inhibition of RANKL-induced NF-κB and ERK signaling pathways. In conclusion, we showed that saliphenylhalamide affected multiple physiological processes including osteoclast differentiation, acidification and polarization, leading to inhibition of osteoclast bone resorption in vitro and wear particle-induced osteolysis in vivo. The results of the study provide proof that the new generation V-ATPase inhibitors, such as saliphenylhalamide, are potential anti-resorptive agents for treatment of peri-implant osteolysis.


Journal of Cellular Physiology | 2009

Caffeic acid phenethyl ester, an active component of honeybee propolis attenuates osteoclastogenesis and bone resorption via the suppression of RANKL-induced NF-κB and NFAT activity.

Estabelle S.M. Ang; Nathan J. Pavlos; Lee Y. Chai; Ming Qi; Tak Sum Cheng; James H. Steer; David A. Joyce; Ming H. Zheng; Jiake Xu

Receptor activator NF‐κB ligand (RANKL)‐activated signaling is essential for osteoclast differentiation, activation and survival. Caffeic acid phenethyl ester (CAPE), a natural NF‐κB inhibitor from honeybee propolis has been shown to have anti‐tumor and anti‐inflammatory properties. In this study, we investigated the effect of CAPE on the regulation of RANKL‐induced osteoclastogenesis, bone resorption and signaling pathways. Low concentrations of CAPE (<1 µM) dose dependently inhibited RANKL‐induced osteoclastogenesis in RAW264.7 cell and bone marrow macrophage (BMM) cultures, as well as decreasing the capacity of human osteoclasts to resorb bone. CAPE inhibited both constitutive and RANKL‐induced NF‐κB and NFAT activation, concomitant with delayed IκBα degradation and inhibition of p65 nuclear translocation. At higher concentrations, CAPE induced apoptosis and caspase 3 activities of RAW264.7 and disrupts the microtubule network in osteoclast like (OCL) cells. Taken together, our findings demonstrate that inhibition of NF‐κB and NFAT activation by CAPE results in the attenuation of osteoclastogenesis and bone resorption, implying that CAPE is a potential treatment for osteolytic bone diseases. J. Cell. Physiol. 221: 642–649, 2009.


PLOS ONE | 2011

Versatile Roles of V-ATPases Accessory Subunit Ac45 in Osteoclast Formation and Function

An Qin; Tak Sum Cheng; Zhen Lin; Nathan J. Pavlos; Qing Jiang; Jiake Xu; Ke R. Dai; Ming H. Zheng

Vacuolar-type H+-ATPases (V-ATPases) are macromolecular proton pumps that acidify intracellular cargos and deliver protons across the plasma membrane of a variety of specialized cells, including bone-resorbing osteoclasts. Extracellular acidification is crucial for osteoclastic bone resorption, a process that initiates the dissolution of mineralized bone matrix. While the importance of V-ATPases in osteoclastic resorptive function is well-defined, whether V-ATPases facilitate additional aspects of osteoclast function and/or formation remains largely obscure. Here we report that the V-ATPase accessory subunit Ac45 participates in both osteoclast formation and function. Using a siRNA-based approach, we show that targeted suppression of Ac45 impairs intracellular acidification and endocytosis, both are prerequisite for osteoclastic bone resorptive function in vitro. Interestingly, we find that knockdown of Ac45 also attenuates osteoclastogenesis owing to a reduced fusion capacity of osteoclastic precursor cells. Finally, in an effort to gain more detailed insights into the functional role of Ac45 in osteoclasts, we attempted to generate osteoclast-specific Ac45 conditional knockout mice using a Cathepsin K-Cre-LoxP system. Surprisingly, however, insertion of the neomycin cassette in the Ac45-FloxNeo mice resulted in marked disturbances in CNS development and ensuing embryonic lethality thus precluding functional assessment of Ac45 in osteoclasts and peripheral bone tissues. Based on these unexpected findings we propose that, in addition to its canonical function in V-ATPase-mediated acidification, Ac45 plays versatile roles during osteoclast formation and function.


Molecular and Cellular Biology | 2011

Tctex-1, a Novel Interaction Partner of Rab3D, Is Required for Osteoclastic Bone Resorption

Nathan J. Pavlos; Tak Sum Cheng; An Qin; Pei Ying Ng; Haotian Feng; Estabelle S.M. Ang; Amerigo Carrello; Ching-Hwa Sung; Reinhard Jahn; Minghao Zheng; Jiake Xu

ABSTRACT Vesicular transport along microtubules must be strictly regulated to sustain the unique structural and functional polarization of bone-resorbing osteoclasts. However, the molecular mechanisms bridging these vesicle-microtubule interactions remain largely obscure. Rab3D, a member of the Rab3 subfamily (Rab3A/B/C/D) of small exocytotic GTPases, represents a core component of the osteoclastic vesicle transport machinery. Here, we identify a new Rab3D-interacting partner, Tctex-1, a light chain of the cytoplasmic dynein microtubule motor complex, by a yeast two-hybrid screen. We demonstrate that Tctex-1 binds specifically to Rab3D in a GTP-dependent manner and co-occupies Rab3D-bearing vesicles in bone-resorbing osteoclasts. Furthermore, we provide evidence that Tctex-1 and Rab3D intimately associate with the dynein motor complex and microtubules in osteoclasts. Finally, targeted disruption of Tctex-1 by RNA interference significantly impairs bone resorption capacity and mislocalizes Rab3D vesicles in osteoclasts, attesting to the notion that components of the Rab3D-trafficking pathway contribute to the maintenance of osteoclastic resorptive function.


Journal of Bone and Mineral Research | 2013

Disruption of the dynein-dynactin complex unveils motor-specific functions in osteoclast formation and bone resorption

Pei Ying Ng; Tak Sum Cheng; Haibo Zhao; Shiqiao Ye; Estabelle S.M. Ang; Ee Cheng Khor; Haotian Feng; Jiake Xu; Ming H. Zheng; Nathan J. Pavlos

Osteoclastic bone resorption requires strict interplay between acidified carrier vesicles, motor proteins, and the underlying cytoskeleton in order to sustain the specialized structural and functional polarization of the ruffled border. Cytoplasmic dynein, a large processive mechanochemical motor comprising heavy, intermediate, and light chains coupled to the dynactin cofactor complex, powers unilateral motility of diverse cargos to microtubule minus‐ends. We have recently shown that regulators of the dynein motor complex constitute critical components of the osteoclastic bone resorptive machinery. Here, by selectively modulating endogenous dynein activity, we show that the integrity of the dynein‐dynactin motor complex is an essential requirement for both osteoclast formation and function. Systematic dissection of the osteoclast dynein‐dynactin complex revealed that it is differentially localized throughout RANKL‐induced osteoclast formation and activation, undergoing microtubule‐coupled reorganization upon the establishment of cellular polarization. In osteoclasts actively resorbing bone, dynein‐dynactin intimately co‐localizes with the CAP‐Gly domain‐containing microtubule plus‐end protein CLIP‐170 at the resorptive front, thus orientating the ruffled border as a microtubule plus‐end domain. Unexpectedly, disruption of the dynein‐dynactin complex by exogenous p50/dynamitin expression retards osteoclast formation in vitro, owing largely to prolonged mitotic stasis of osteoclast progenitor cells. More importantly, loss of osteoclastic dynein activity results in a drastic redistribution of key intracellular organelles, including the Golgi and lysosomes, an effect that coincides with impaired cathepsin K secretion and diminished bone resorptive function. Collectively, these data unveil a previously unrecognized role for the dynein‐dynactin motor complex in osteoclast formation and function, serving not only to regulate their timely maturation but also the delivery of osteolytic cargo that is essential to the bone resorptive process.


Molecular Biology of the Cell | 2016

Sorting nexin 27 couples PTHR trafficking to retromer for signal regulation in osteoblasts during bone growth.

Audrey S. M. Chan; Thomas Clairfeuille; Euphemie Landao-Bassonga; Genevieve Kinna; Pei Ying Ng; Li Shen Loo; Tak Sum Cheng; Minghao Zheng; Wanjin Hong; Rohan D. Teasdale; Brett M. Collins; Nathan J. Pavlos

The endocytic protein SNX27 functions to link the parathyroid hormone receptor (PTHR) to the retromer trafficking complex. Loss of SNX27 in mice leads to overactive PTHR signaling and reduced osteoblastic bone formation during postnatal bone growth. Thus SNX27 is a new modulator of PTHR signaling.


Oncotarget | 2016

Glucocorticoid impairs cell-cell communication by autophagy-mediated degradation of connexin 43 in osteocytes

Junjie Gao; Tak Sum Cheng; An Qin; Nathan J. Pavlos; Tao Wang; Kai Song; Yan Wang; Lianzhi Chen; Lin Zhou; Qing Jiang; Hiroshi Takayanagi; Sheng Yan; Minghao Zheng

Osteocytes comprising over 90% of the bone cell population are highly susceptible to the adverse effects of glucocorticoids (GC) administration. Here we observed that Dexamethasone (Dex) induces a robust cytoskeleton rearrangement and decreases Cx43 protein expression in osteocyte-like MLO-Y4 cells. Using a Dmp1Cre-mT/mG osteocyte ex vivo culture system, we found significant shortening of dendritic processes in primary osteocytes following Dex administration. Loss of dendritic processes is a consequence of reduced Cx43 connectivity upon Dex induced autophagy in both RFP-GFP-LC3B transfected MLO-Y4 cells and primary calvarial osteocytes from LC3GFP transgenic mice. Upon the induction of autophagy by Dex, Cx43 was internalized into autophagosome/autolysosomes and degraded by autophagy. The degradation was attenuated following lysosomal inhibition using chloroquine (CLQ) and suppression of autophagy by Atg5 silencing. Inhibition Akt-mTORC1 signaling by Dex induces autophagy subsequently resulting in Cx43 degradation. Activation of Akt phosphorylation by IGF-1 attenuated Dex induced autophagy and degradation of Cx43. Together, we demonstrated that GC impair osteocyte cell-cell connectivity via autophagy mediated degradation of Cx43 through inhibition of the Akt-mTORC1 signaling. This may account for the deleterious effect of GC-induced bone loss.


PLOS ONE | 2015

Disulfiram Attenuates Osteoclast Differentiation In Vitro: A Potential Antiresorptive Agent

Hua Ying; An Qin; Tak Sum Cheng; Nathan J. Pavlos; Sarah L. Rea; Kerong Dai; Ming H. Zheng

Disulfiram (DSF), a cysteine modifying compound, has long been clinically employed for the treatment of alcohol addiction. Mechanistically, DSF acts as a modulator of MAPK and NF-κB pathways signaling pathways. While these pathways are crucial for osteoclast (OC) differentiation, the potential influence of DSF on OC formation and function has not been directly assessed. Here, we explore the pharmacological effects of DSF on OC differentiation, activity and the modulation of osteoclastogenic signaling cascades. We first analyzed cytotoxicity of DSF on bone marrow monocytes isolated from C57BL/6J mice. Upon the establishment of optimal dosage, we conducted osteoclastogenesis and bone resorption assays in the presence or absence of DSF treatment. Luciferase assays in RAW264.7 cells were used to examine the effects of DSF on major transcription factors activation. Western blot, reverse transcription polymerase chain reaction, intracellular acidification and proton influx assays were employed to further dissect the underlying mechanism. DSF treatment dose-dependently inhibited both mouse and human osteoclastogenesis, especially at early stages of differentiation. This inhibition correlated with a decrease in the expression of key osteoclastic marker genes including CtsK, TRAP, DC-STAMP and Atp6v0d2 as well as a reduction in bone resorption in vitro. Suppression of OC differentiation was found to be due, at least in part, to the blockade of several key receptor activators of nuclear factor kappa-B ligand (RANKL)-signaling pathways including ERK, NF-κB and NFATc1. On the other hand, DSF failed to suppress intracellular acidification and proton influx in mouse and human osteoclasts using acridine orange quenching and microsome-based proton transport assays. Our findings indicate that DSF attenuates OC differentiation via the collective suppression of several key RANKL-mediated signaling cascades, thus making it an attractive agent for the treatment of OC-mediated disorders.

Collaboration


Dive into the Tak Sum Cheng's collaboration.

Top Co-Authors

Avatar

Nathan J. Pavlos

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

An Qin

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Ming H. Zheng

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Jiake Xu

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Minghao Zheng

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Changqing Zhang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Euphemie Landao-Bassonga

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Pei Ying Ng

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Kerong Dai

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Estabelle S.M. Ang

University of Western Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge