Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takaaki Miura is active.

Publication


Featured researches published by Takaaki Miura.


Cancer Research | 2013

Enhanced inhibition of ERK signaling by a novel allosteric MEK inhibitor, CH5126766, that suppresses feedback reactivation of RAF activity.

Nobuya Ishii; Naoki Harada; Eric W. Joseph; Kazuhiro Ohara; Takaaki Miura; Hiroshi Sakamoto; Yutaka Matsuda; Yasushi Tomii; Yukako Tachibana-Kondo; Hitoshi Iikura; Toshihiro Aoki; Nobuo Shimma; Mikio Arisawa; Yoshihiro Sowa; Poulikos I. Poulikakos; Neal Rosen; Yuko Aoki; Toshiyuki Sakai

Tumors with mutant RAS are often dependent on extracellular signal-regulated kinase (ERK) signaling for growth; however, MEK inhibitors have only marginal antitumor activity in these tumors. MEK inhibitors relieve ERK-dependent feedback inhibition of RAF and cause induction of MEK phosphorylation. We have now identified a MEK inhibitor, CH5126766 (RO5126766), that has the unique property of inhibiting RAF kinase as well. CH5126766 binding causes MEK to adopt a conformation in which it cannot be phosphorylated by and released from RAF. This results in formation of a stable MEK/RAF complex and inhibition of RAF kinase. Consistent with this mechanism, this drug does not induce MEK phosphorylation. CH5126766 inhibits ERK signaling output more effectively than a standard MEK inhibitor that induces MEK phosphorylation and has potent antitumor activity as well. These results suggest that relief of RAF feedback limits pathway inhibition by standard MEK inhibitors. CH5126766 represents a new type of MEK inhibitor that causes MEK to become a dominant-negative inhibitor of RAF and that, in doing so, may have enhanced therapeutic activity in ERK-dependent tumors with mutant RAS.


Bioorganic & Medicinal Chemistry Letters | 2011

Design and synthesis of novel allosteric MEK inhibitor CH4987655 as an orally available anticancer agent.

Yoshiaki Isshiki; Yasunori Kohchi; Hitoshi Iikura; Yasuaki Matsubara; Kohsuke Asoh; Takeshi Murata; Masami Kohchi; Eisaku Mizuguchi; Shinji Tsujii; Kazuo Hattori; Takaaki Miura; Yasushi Yoshimura; Satoshi Aida; Masanori Miwa; Ryoichi Saitoh; Naoaki Murao; Hisafumi Okabe; Charles Belunis; Cheryl Janson; Christine Lukacs; Verena Schück; Nobuo Shimma

The MAP kinase pathway is one of the most important pathways involved in cell proliferation and differentiation, and its components are promising targets for antitumor drugs. Design and synthesis of a novel MEK inhibitor, based on the 3D-structural information of the target enzyme, and then multidimensional optimization including metabolic stability, physicochemical properties and safety profiles were effectively performed and led to the identification of a clinical candidate for an orally available potent MEK inhibitor, CH4987655, possessing a unique 3-oxo-oxazinane ring structure at the 5-position of the benzamide core structure. CH4987655 exhibits slow dissociation from the MEK enzyme, remarkable in vivo antitumor efficacy both in mono- and combination therapy, desirable metabolic stability, and insignificant MEK inhibition in mouse brain, implying few CNS-related side effects in human. An excellent PK profile and clear target inhibition in PBMC were demonstrated in a healthy volunteer clinical study.


Cancer Science | 2012

Preclinical antitumor activity of the novel heat shock protein 90 inhibitor CH5164840 against human epidermal growth factor receptor 2 (HER2)‐overexpressing cancers

Naomi Ono; Toshikazu Yamazaki; Yoshito Nakanishi; Toshihiko Fujii; Kiyoaki Sakata; Yukako Tachibana; Atsushi Suda; Kihito Hada; Takaaki Miura; Shigeo Sato; Ryoichi Saitoh; Kohnosuke Nakano; Takuo Tsukuda; Toshiyuki Mio; Nobuya Ishii; Osamu Kondoh; Yuko Aoki

Heat shock protein 90 (Hsp90), a molecular chaperone that plays a significant role in the stability and maturation of client proteins, including oncogenic targets for cell transformation, proliferation, and survival, is an attractive target for cancer therapy. We identified the novel Hsp90 inhibitor, CH5164840, and investigated its induction of oncogenic client protein degradation, antiproliferative activity, and apoptosis against an NCI‐N87 gastric cancer cell line and a BT‐474 breast cancer cell line. Interestingly, CH5164840 demonstrated tumor selectivity both in vitro and in vivo, binding to tumor Hsp90 (which forms active multiple chaperone complexes) in vitro, and being distributed effectively to tumors in a mouse model, which, taken together, supports the decreased levels of phosphorylated Akt by CH5164840 that we observed in tumor tissues, but not in normal tissues. As well as being well tolerated, the oral administration of CH5164840 exhibited potent antitumor efficacy with regression in NCI‐N87 and BT‐474 tumor xenograft models. In addition, CH5164840 significantly enhanced antitumor efficacy against gastric and breast cancer models when combined with the human epidermal growth factor receptor 2 (HER2)‐targeted agents, trastuzumab and lapatinib. These data demonstrate the potent antitumor efficacy of CH5164840 when administered alone, and its significant combination efficacy when combined with trastuzumab or lapatinib, supporting the clinical development of CH5164840 as an Hsp90 inhibitor for combination therapy with HER2‐targeted agents against HER2‐overexpressing tumors. (Cancer Sci 2012; 103: 342–349)


Bioorganic & Medicinal Chemistry Letters | 2011

Lead generation of heat shock protein 90 inhibitors by a combination of fragment-based approach, virtual screening, and structure-based drug design

Takaaki Miura; Takaaki A. Fukami; Kiyoshi Hasegawa; Naomi Ono; Atsushi Suda; Hidetoshi Shindo; D.H. Yoon; Sung-Jin Kim; Young-Jun Na; Yuko Aoki; Nobuo Shimma; Takuo Tsukuda; Yasuhiko Shiratori

Heat shock protein 90 (Hsp90) is a molecular chaperone which regulates maturation and stabilization of its substrate proteins, known as client proteins. Many client proteins of Hsp90 are involved in tumor progression and survival and therefore Hsp90 can be a good target for developing anticancer drugs. With the aim of efficiently identifying a new class of orally available inhibitors of the ATP binding site of this protein, we conducted fragment screening and virtual screening in parallel against Hsp90. This approach quickly identified 2-aminotriazine and 2-aminopyrimidine derivatives as specific ligands to Hsp90 with high ligand efficiency. In silico evaluation of the 3D X-ray Hsp90 complex structures of the identified hits allowed us to promptly design CH5015765, which showed high affinity for Hsp90 and antitumor activity in human cancer xenograft mouse models.


Bioorganic & Medicinal Chemistry Letters | 2012

Design and synthesis of novel macrocyclic 2-amino-6-arylpyrimidine Hsp90 inhibitors

Atsushi Suda; Hiroshi Koyano; Tadakatsu Hayase; Kihito Hada; Kenichi Kawasaki; Susumu Komiyama; Kiyoshi Hasegawa; Takaaki A. Fukami; Shigeo Sato; Takaaki Miura; Naomi Ono; Toshikazu Yamazaki; Ryoichi Saitoh; Nobuo Shimma; Yasuhiko Shiratori; Takuo Tsukuda

Macrocyclic compounds bearing a 2-amino-6-arylpyrimidine moiety were identified as potent heat shock protein 90 (Hsp90) inhibitors by modification of 2-amino-6-aryltriazine derivative (CH5015765). We employed a macrocyclic structure as a skeleton of new inhibitors to mimic the geldanamycin-Hsp90 interactions. Among the identified inhibitors, CH5164840 showed high binding affinity for N-terminal Hsp90α (K(d)=0.52nM) and strong anti-proliferative activity against human cancer cell lines (HCT116 IC(50)=0.15μM, NCI-N87 IC(50)=0.066μM). CH5164840 displayed high oral bioavailability in mice (F=70.8%) and potent antitumor efficacy in a HCT116 human colorectal cancer xenograft model (tumor growth inhibition=83%).


Bioorganic & Medicinal Chemistry | 2014

Design and synthesis of 2-amino-6-(1H,3H-benzo[de]isochromen-6-yl)-1,3,5-triazines as novel Hsp90 inhibitors.

Atsushi Suda; Kenichi Kawasaki; Susumu Komiyama; Yoshiaki Isshiki; D.H. Yoon; Sung-Jin Kim; Young-Jun Na; Kiyoshi Hasegawa; Takaaki A. Fukami; Shigeo Sato; Takaaki Miura; Naomi Ono; Toshikazu Yamazaki; Ryoichi Saitoh; Nobuo Shimma; Yasuhiko Shiratori; Takuo Tsukuda

A novel series of 2-amino-1,3,5-triazines bearing a tricyclic moiety as heat shock protein 90 (Hsp90) inhibitors is described. Molecular design was performed using X-ray cocrystal structures of the lead compound CH5015765 and natural Hsp90 inhibitor geldanamycin with Hsp90. We optimized affinity to Hsp90, in vitro cell growth inhibitory activity, water solubility, and liver microsomal stability of inhibitors and identified CH5138303. This compound showed high binding affinity for N-terminal Hsp90α (Kd=0.52nM) and strong in vitro cell growth inhibition against human cancer cell lines (HCT116 IC50=0.098μM, NCI-N87 IC50=0.066μM) and also displayed high oral bioavailability in mice (F=44.0%) and potent antitumor efficacy in a human NCI-N87 gastric cancer xenograft model (tumor growth inhibition=136%).


Scientific Reports | 2017

Long lasting neutralization of C5 by SKY59, a novel recycling antibody, is a potential therapy for complement-mediated diseases.

Taku Fukuzawa; Zenjiro Sampei; Kenta Haraya; Yoshinao Ruike; Meiri Shida-Kawazoe; Yuichiro Shimizu; Siok Wan Gan; Machiko Irie; Yoshinori Tsuboi; Hitoshi Tai; Tetsushi Sakiyama; Akihisa Sakamoto; Shinya Ishii; Atsuhiko Maeda; Yuki Iwayanagi; Norihito Shibahara; Mitsuko Shibuya; Genki Nakamura; Takeru Nambu; Akira Hayasaka; Futa Mimoto; Yuu Okura; Yuji Hori; Kiyoshi Habu; Manabu Wada; Takaaki Miura; Tatsuhiko Tachibana; Kiyofumi Honda; Hiroyuki Tsunoda; Takehisa Kitazawa

Dysregulation of the complement system is linked to the pathogenesis of a variety of hematological disorders. Eculizumab, an anti-complement C5 monoclonal antibody, is the current standard of care for paroxysmal nocturnal hemoglobinuria (PNH) and atypical hemolytic uremic syndrome (aHUS). However, because of high levels of C5 in plasma, eculizumab has to be administered biweekly by intravenous infusion. By applying recycling technology through pH-dependent binding to C5, we generated a novel humanized antibody against C5, SKY59, which has long-lasting neutralization of C5. In cynomolgus monkeys, SKY59 suppressed C5 function and complement activity for a significantly longer duration compared to a conventional antibody. Furthermore, epitope mapping by X-ray crystal structure analysis showed that a histidine cluster located on C5 is crucial for the pH-dependent interaction with SKY59. This indicates that the recycling effect of SKY59 is driven by a novel mechanism of interaction with its antigen and is distinct from other known pH-dependent antibodies. Finally, SKY59 showed neutralizing effect on C5 variant p.Arg885His, while eculizumab does not inhibit complement activity in patients carrying this mutation. Collectively, these results suggest that SKY59 is a promising new anti-C5 agent for patients with PNH and other complement-mediated disorders.


Bioorganic & Medicinal Chemistry Letters | 2012

Design and evaluation of azaindole-substituted N-hydroxypyridones as glyoxalase I inhibitors

Takashi Chiba; Jun Ohwada; Hiroshi Sakamoto; Takamitsu Kobayashi; Takaaki A. Fukami; Machiko Irie; Takaaki Miura; Kazuhiro Ohara; Hiroshi Koyano

We conducted a high throughput screening for glyoxalase I (GLO1) inhibitors and identified 4,6-diphenyl-N-hydroxypyridone as a lead compound. Using a binding model of the lead and public X-ray coordinates of GLO1 enzymes complexed with glutathione analogues, we designed 4-(7-azaindole)-substituted 6-phenyl-N-hydroxypyridones. 7-Azaindoles 7-nitrogen was expected to interact with a water network, resulting in an interaction with the protein. We validated this inhibitor design by comparing its structure-activity relationship (SAR) with that of corresponding indole derivatives, by analyzing the binding mode with X-ray crystallography and by evaluating its thermodynamic binding parameters.


Bioorganic & Medicinal Chemistry | 2016

Discovery of a potent and highly selective transforming growth factor β receptor-associated kinase 1 (TAK1) inhibitor by structure based drug design (SBDD).

Terushige Muraoka; Mitsuaki Ide; Kenji Morikami; Machiko Irie; Mitsuaki Nakamura; Takaaki Miura; Takayuki Kamikawa; Masamichi Nishihara; Hirotaka Kashiwagi

A novel thienopyrimidinone analog was discovered as a potent and highly selective TAK1 inhibitor using the SBDD approach. TAK1 plays a key role in inflammatory and immune signaling, so TAK1 is considered to be an attractive molecular target for the treatment of human diseases (inflammatory disease, cancer, etc.). After the hit compound had been obtained, our modifications successfully increased TAK1 inhibitory activity and solubility, but metabolic stability was still unsatisfactory. To improve metabolic stability, we conducted metabolic identification. Although the obtained metabolite was fortunately a potent TAK1 inhibitor, its kinase selectivity was low. Subsequently, to achieve high kinase selectivity, we used SBDD to follow two strategies: one targeting unique amino acid residues in TAK1, especially the combination of Ser111 and Asn114; the other decreasing the interaction with Tyr106 at the hinge position in TAK1. As expected, our designed compound showed an excellent kinase selectivity profile in both an in-house and a commercially available panel assay of over 420 kinases and also retained its potent TAK1 inhibitory activity (TAK1 IC50=11nM).


Bioorganic & Medicinal Chemistry Letters | 2017

Identification of a selective inhibitor of transforming growth factor β-activated kinase 1 by biosensor-based screening of focused libraries

Takaaki Miura; Atsushi Matsuo; Terushige Muraoka; Mitsuaki Ide; Kenji Morikami; Takayuki Kamikawa; Masamichi Nishihara; Hirotaka Kashiwagi

Transforming growth factor-β activated kinase 1 (TAK1), a member of the mitogen-activated protein kinase kinase kinase family, plays an essential role in mediating signals from various pro-inflammatory cytokines and therefore may be a good target for developing anti-inflammation agents. Herein, we report our efforts to identify TAK1 inhibitors with a good selectivity profile with which to initiate medicinal chemistry. Instead of resorting to a high-throughput screening campaign, we performed biosensor-based biophysical screening for a limited number of compounds by taking advantage of existing knowledge on kinase inhibitors. Rather than focusing on one specific inhibition mode, we searched for three different types, Type I (ATP-competitive, DFG-in), Type II (DFG-out), and Type III binders (non-ATP competitive) in parallel, and succeeded in identifying candidates in all three categories efficiently and rapidly. Finally, the biosensor-based binding kinetics for the active and inactive forms of TAK1 were measured to prioritize the Type I and Type II inhibitors. The effort resulted in the identification of a new TAK1-selective Type I compound with a thienopyrimidine scaffold that served as a good starting point for medicinal chemistry.

Collaboration


Dive into the Takaaki Miura's collaboration.

Top Co-Authors

Avatar

Nobuo Shimma

Chugai Pharmaceutical Co.

View shared research outputs
Top Co-Authors

Avatar

Kazuhiro Ohara

Chugai Pharmaceutical Co.

View shared research outputs
Top Co-Authors

Avatar

Kenji Morikami

Chugai Pharmaceutical Co.

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nobuya Ishii

Chugai Pharmaceutical Co.

View shared research outputs
Top Co-Authors

Avatar

Takuo Tsukuda

Chugai Pharmaceutical Co.

View shared research outputs
Top Co-Authors

Avatar

Atsushi Suda

Chugai Pharmaceutical Co.

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Machiko Irie

Chugai Pharmaceutical Co.

View shared research outputs
Top Co-Authors

Avatar

Ryoichi Saitoh

Chugai Pharmaceutical Co.

View shared research outputs
Researchain Logo
Decentralizing Knowledge