Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takaaki Sato is active.

Publication


Featured researches published by Takaaki Sato.


Neuroreport | 1991

Two types of increases in free Ca2+ evoked by odor in isolated frog olfactory receptor neurons

Takaaki Sato; Junzo Hirono; Mitsuo Tonoike; Masamine Takebayashi

Olfactory transduction involves second messenger-related enzymes and cAMP-gated, K+ and Ca2+ channels, which are known to be regulated by Ca2+. We report here that cytosolic free Ca2+ concentration ([Ca2+]i) in olfactory receptor neuron was increased by odorants or forskolin and Ca2+ influx contributed to the adaptation. The increases in [Ca2+]i were below two to three-fold of resting level and transient for 26 s (mean value, n = 18). The increases were due to two pathways: Ca2+ influx and release. The slow increases in [Ca2+]i by forskolin resembled those by citralva. It was suggested that the responses to citralva were accompanied by increases in intracellular cAMP and Ca2+ influx or release leading to transient increases in [Ca2+]i.


Chemical Senses | 2003

Sensitivity-dependent Hierarchical Receptor Codes for Odors

Hiroshi Hamana; Junzo Hirono; Miwako Kizumi; Takaaki Sato

In order to comprehend the strategy of odor encoding by odorant receptors, we isolated 2740 mouse receptor neurons from four olfactory epithelial zones and classified them in terms of their sensitivities and tuning specificities to a chiral pair of odorants, S(+)-carvone (caraway-like odor) and R(-)-carvone (spearmint-like odor). Our approach revealed that the majority of receptors at the lowest effective stimulus concentration represented the principal odor qualities characteristic of each enantiomer by means of the principal odor qualities of the odorants for which the receptors were most sensitive. The chiral-non-discriminating receptors were newly recruited 3.7 times of R(-)-carvone-sensitive receptors and totally became 2.8 times (39/14) of R(-)carvone-sensitive receptors in the subpopulations when the stimulus concentration was increased 10-fold [corrected]. More than 80% of the responsive receptors (an estimated 70 +/- alpha types) exhibited overlapping sensitivities between the enantiomers. The signals from the non-discriminating receptors may be reduced to decode the characteristic odor identity for R(-)-carvone in the brain over an adequate range of stimulus strengths. The information processing of odors appears to involve the selective weighting of the signals from the most sensitive receptors. An analysis of the overall receptor codes to carvones indicated that the system employs hierarchical receptor codes: principal odor qualities are encoded by the most sensitive receptors and lower-ranked odor qualities by less sensitive receptors.


Brain Research | 2011

Rose odor can innately counteract predator odor

Mutsumi Matsukawa; Masato Imada; Toyotaka Murakami; Shin Aizawa; Takaaki Sato

When animals smell a predator odor such as 2,5-Dihydro-2,4,5-trimethylthiazoline (TMT), even if it is a novel substance, the hypothalamo-pituitary-adrenal (HPA) axis is activated, causing stress-like behaviors. Although the medial part of the bed nucleus of stria terminalis (mBST) is known to be involved in this process, the mechanism remains unclear. Moreover, it is unknown whether there is any odor that can counteract the predator odor, even when the odorants are novel substances for the animals. In this study, we assessed whether rose odor can counteract by counting the number of activated neurons in mice brain following the presentation of rose odor with or without TMT for 30 min. The number of activated cells in the mBST and in the ventrorostral part of the anterior piriform cortex (APC) was significantly reduced by a mixture of TMT and rose odor; however, no significant differences were noted in the dorsal part of the APC and in the olfactory bulb (OB) following TMT presentation with or without rose odor. The results suggest that rose odor may counteract the TMT-induced stress response in the OB and/or APC and suppress the neural circuit to the mBST. It also indicates that there are some odors that can innately counteract predator odor, even when they have not been experienced before.


Chemical Senses | 2008

Relationship between Peripheral Receptor Code and Perceived Odor Quality

Yuichi Furudono; Yukio Sone; Kayori Takizawa; Junzo Hirono; Takaaki Sato

The discrimination of thousands of odorants is mediated by several hundred olfactory receptors (ORs). It is generally accepted that the main strategy in encoding odor quality is a combinatorial receptor code scheme, in which odorants are discriminated by different sets of ORs. In the present study, we classified 12 test odorants by their receptor codes and perceived odor qualities to examine whether odorants showing similar receptor codes are also similar in their odor qualities. Similarities of receptor codes between odorants were estimated by the overlapping responses of murine isolated olfactory sensory neurons. In contrast, we conducted a human sensory test to classify the test odorants according to their odor qualities. Despite the difference in species, the groupings of the test odorants were well conserved between receptor code and odor quality. These findings indicate that odorants that are discriminated by murine receptor codes are perceived as different odors by humans and further suggest that similarity of receptor codes correlates with that of odor quality, at least in our test odorants at the concentrations tested.


Anatomical Science International | 2008

Architecture of odor information processing in the olfactory system

Takaaki Sato; Junzo Hirono; Hiroshi Hamana; Takahiro Ishikawa; Akira Shimizu; Ichiro Takashima; Riichi Kajiwara; Toshio Iijima

Since the discovery of the superfamily of approximately 1000 odorant receptor genes in rodents, the structural simplicity as well as the complexity of the olfactory system have been revealed. The simple aspects include the one neuron-one receptor rule and the exclusive convergence of projections from receptor neurons expressing the same receptors to one or two glomeruli in the olfactory bulb. Odor decoding in the olfactory cortex or higher cortical areas is likely to be a complicated process that depends on the sequence of signal activation and the relative signal intensities of receptors overlapping for similar but different odors. The aim of the present study was to investigate odor information processing both in receptors and in the olfactory cortex. At the receptor level, the similarity and difference in receptor codes between a pair of chiral odorants were examined using the tissue-printing method for sampling all the epithelial zones. In order to dissect odor-driven signal processing in the olfactory cortex by reducing cross-talk with the non-olfactory activities, such as cyclic respiration or other sensory inputs, an in vitro preparation of isolated whole brain with an attached nose was developed, and the methodologies and resulting hypothesis of receptor-sensitivity-dependent hierarchical odor information coding were reviewed.


Journal of Neuroscience Methods | 2010

Heterologous functional expression system for odorant receptors

Hiroshi Hamana; Shou-Xin Li; Laure Breuils; Junzo Hirono; Takaaki Sato

Heterologous functional expression system for odorant receptors (ORs) is essential for investigating the structure-activity relationship (SAR) of various ligands. Different systems that coexpressed ORs with different G-protein alpha subunits (Galpha) demonstrated inconsistent effects on weak agonists and antagonists, but retained original relative sensitivities to potent agonists. In order to maintain the binding specificity of Galpha to ORs, we constructed a chimeric Galpha(15_olf), which contained the Galpha(15) sequence with the conserved C-terminal region of Galpha(olf). The Ca(2+) responses of the HEK293 cells that coexpressed OR-S6 with Galpha(15_olf) were more robust and reproducible compared to those of cells that coexpressed OR-S6 with Galpha(15). Furthermore, Galpha(15) sometimes induced unstable Ca(2+) responses that limited the accuracy of quantitative comparison of peak responses. Our results showed that a heterologous expression system that coexpressed ORs with Galpha(15_olf) and receptor transporting proteins was suitable for SAR analysis of various ligands.


Neuroreport | 2012

Stress-related activities induced by predator odor may become indistinguishable by hinokitiol odor.

Toyotaka Murakami; Mutsumi Matsukawa; Narumi Katsuyama; Masato Imada; Shin Aizawa; Takaaki Sato

Predator odors, such as 2,5-dihydro-2,4,5-trimethylthiazoline (TMT), induce a stress-like behavior in some rodents, and there is activation of a complex mix of brain regions including the anterior piriform cortex (APC) and the bed nucleus of stria terminalis (BST). In contrast, rose odor can counteract TMT-induced activation of the ventrorostral part of APC and the medial part of BST. In the present study, two novel odors, woody (hinokitiol) and caraway [S(+)-carvone] odors, were evaluated to determine whether they have an antistress effect. Plasma adrenocorticotropic hormone levels, a marker of stress, and the number of c-Fos-immunopositive cells were determined in APC and BST. Plasma adrenocorticotropic hormone levels were increased by TMT alone and in combination with S(+)-carvone; however, hinokitiol with or without TMT did not have an effect. The number of activated cells in the medial part of BST was increased by TMT alone and in combination with S(+)-carvone or hinokitiol. Although TMT alone activated the medial part of BST, a mixture of TMT and hinokitiol activated both the medial and the lateral part of BST. These data suggest that the selective responses to TMT in the medial part of BST were obscured by activation of more odor-related regions by hinokitiol with TMT. In addition, the ratio of medial to lateral BST activation may be critical in stress-related behavior. In conclusion, hinokitiol can alleviate TMT-induced stress; however, the underlying mechanism appears to be different from that of the rose odor, as found in our previous study.


Scientific Reports | 2015

Supersensitive detection and discrimination of enantiomers by dorsal olfactory receptors: evidence for hierarchical odour coding

Takaaki Sato; Reiko Kobayakawa; Ko Kobayakawa; Makoto Emura; Shigeyoshi Itohara; Miwako Kizumi; Hiroshi Hamana; Akio Tsuboi; Junzo Hirono

Enantiomeric pairs of mirror-image molecular structures are difficult to resolve by instrumental analyses. The human olfactory system, however, discriminates (−)-wine lactone from its (+)-form rapidly within seconds. To gain insight into receptor coding of enantiomers, we compared behavioural detection and discrimination thresholds of wild-type mice with those of ΔD mice in which all dorsal olfactory receptors are genetically ablated. Surprisingly, wild-type mice displayed an exquisite “supersensitivity” to enantiomeric pairs of wine lactones and carvones. They were capable of supersensitive discrimination of enantiomers, consistent with their high detection sensitivity. In contrast, ΔD mice showed selective major loss of sensitivity to the (+)-enantiomers. The resulting 108-fold differential sensitivity of ΔD mice to (−)- vs. (+)-wine lactone matched that observed in humans. This suggests that humans lack highly sensitive orthologous dorsal receptors for the (+)-enantiomer, similarly to ΔD mice. Moreover, ΔD mice showed >1010-fold reductions in enantiomer discrimination sensitivity compared to wild-type mice. ΔD mice detected one or both of the (−)- and (+)-enantiomers over a wide concentration range, but were unable to discriminate them. This “enantiomer odour discrimination paradox” indicates that the most sensitive dorsal receptors play a critical role in hierarchical odour coding for enantiomer identification.


Journal of Biochemistry | 2014

Solution structure of the chitin-binding domain 1 (ChBD1) of a hyperthermophilic chitinase from Pyrococcus furiosus.

Shouhei Mine; Tsutomu Nakamura; Takaaki Sato; Takahisa Ikegami; Koichi Uegaki

A chitinase, from Pyrococcus furiosus, is a hyperthermophilic glycosidase that effectively hydrolyses both α and β crystalline chitin. This chitinase has unique structural features; it contains two catalytic domains (AD1 and AD2) and two chitin-binding domains (ChBD1 and ChBD2). We have determined the structure of ChBD1, which significantly enhances the activity of the catalytic domains, by nuclear magnetic resonance spectroscopy. The overall structure of ChBD1 had a compact and globular architecture consisting of three anti-parallel β-strands, similar to those of other proteins classified into carbohydrate-binding module (CBM) family 5. A mutagenesis experiment suggested three solvent-exposed aromatic residues (Tyr112, Trp113 and Tyr123) as the chitin-binding sites. The involvement of Tyr123 or the corresponding aromatic residues in other CBMs, has been demonstrated for the first time. This result indicates that the binding mode may be different from those of other chitin-binding domains in CBM family 5. In addition, the binding affinities of ChBD1 and ChBD2 were quite different, suggesting that the two ChBDs each play a different role in efficiently increasing the activities of AD1 and AD2.


Gene | 2013

Construction of new cloning vectors that employ the phytoene synthase encoding gene for color screening of cloned DNA inserts in Thermus thermophilus

Atsushi Fujita; Yoshio Misumi; Shinya Honda; Takaaki Sato; Yoshinori Koyama

Strains of Thermus thermophilus produce unique carotenoids called thermozeaxanthins and their colonies are light-yellow pigmented. Here, we developed a new cloning system allowing for the rapid and convenient detection of recombinants by color screening based on carotenoid production in T. thermophilus. We constructed two cloning vectors that overexpress the crtB gene encoding a phytoene synthase under the strong promoter of the slpA gene. Phytoene synthase is one of essential enzymes for the production of carotenoids. We also isolated a carotenoid-overproducing mutant that formed orange colonies. Because disruption of crtB in the carotenoid-overproducing mutant resulted in white colonies, we used the disruptant as a host strain. Whereas transformants carrying a new cloning vector, pTRK1-PRslpA-crtBcas, grew into unusual red-pigmented colonies probably because of the extreme accumulation of thermozeaxanthins, those carrying the vector with a foreign DNA inserts formed white colonies. Thus, recombinants can be detected easily by color screening (red/white screening) in T. thermophilus. This cloning system requires no additional chromogenic substrate in the medium. We also constructed a promoter-probe vector, pTRK1-crtBmcs-PP, employing the open reading frame of crtB with multiple cloning sites. Using this vector, a series of colony-color phenotypes is observed probably depending on promoter activities of foreign DNA inserts, which enables the rapid probing of promoters. These vectors are useful to simplify cloning procedures and to identify the promoters of different strengths in T. thermophilus.

Collaboration


Dive into the Takaaki Sato's collaboration.

Top Co-Authors

Avatar

Junzo Hirono

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akio Tsuboi

Nara Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ichiro Takashima

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takashi Kawasaki

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge