Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takafumi Akamatsu is active.

Publication


Featured researches published by Takafumi Akamatsu.


Sensors | 2013

NO and NO2 Sensing Properties of WO3 and Co3O4 Based Gas Sensors

Takafumi Akamatsu; Toshio Itoh; Noriya Izu; Woosuck Shin

Semiconductor-based gas sensors that use n-type WO3 or p-type Co3O4 powder were fabricated and their gas sensing properties toward NO2 or NO (0.5–5 ppm in air) were investigated at 100 °C or 200 °C. The resistance of the WO3-based sensor increased on exposure to NO2 and NO. On the other hand, the resistance of the Co3O4-based sensor varied depending on the operating temperature and the gas species. The chemical states of the surface of WO3 or those of the Co3O4 powder on exposure to 1 ppm NO2 and NO were investigated by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. No clear differences between the chemical states of the metal oxide surface exposed to NO2 or NO could be detected from the DRIFT spectra.


Sensors | 2014

Calorimetric thermoelectric gas sensor for the detection of hydrogen, methane and mixed gases.

Nam Hee Park; Takafumi Akamatsu; Toshio Itoh; Noriya Izu; Woosuck Shin

A novel miniaturized calorimeter-type sensor device with a dual-catalyst structure was fabricated by integrating different catalysts on the hot (Pd/θ-Al2O3) and cold (Pt/α-Al2O3) ends of the device. The device comprises a calorimeter with a thermoelectric gas sensor (calorimetric-TGS), combining catalytic combustion and thermoelectric technologies. Its response for a model fuel gas of hydrogen and methane was investigated with various combustor catalyst compositions. The calorimetric-TGS devices detected H2, CH4, and a mixture of the two with concentrations ranging between 200 and 2000 ppm at temperatures of 100–400 °C, in terms of the calorie content of the gases. It was necessary to reduce the much higher response voltage of the TGS to H2 compared to CH4. We enhanced the H2 combustion on the cold side so that the temperature differences and response voltages to H2 were reduced. The device response to H2 combustion was reduced by 50% by controlling the Pt concentration in the Pt/α-Al2O3 catalyst on the cold side to 3 wt%.


Sensors | 2013

CO Responses of Sensors Based on Cerium Oxide Thick Films Prepared from Clustered Spherical Nanoparticles

Noriya Izu; Ichiro Matsubara; Toshio Itoh; Takafumi Akamatsu; Woosuck Shin

Various types of CO sensors based on cerium oxide (ceria) have been reported recently. It has also been reported that the response speed of CO sensors fabricated from porous ceria thick films comprising nanoparticles is extremely high. However, the response value of such sensors is not suitably high. In this study, we investigated methods of improving the response values of CO sensors based on ceria and prepared gas sensors from core-shell ceria polymer hybrid nanoparticles. These hybrid nanoparticles have been reported to have a unique structure: The core consists of a cluster of ceria crystallites several nanometers in size. We compared the characteristics of the sensors based on thick films prepared from core-shell nanoparticles with those of sensors based on thick films prepared from conventionally used precipitated nanoparticles. The sensors prepared from the core-shell nanoparticles exhibited a resistance that was ten times greater than that of the sensors prepared from the precipitated nanoparticles. The response values of the gas sensors based on the core-shell nanoparticles also was higher than that of the sensors based on the precipitated nanoparticles. Finally, improvements in sensor response were also noticed after the addition of Au nanoparticles to the thick films used to fabricate the two types of sensors.


Sensors | 2016

Development of an Exhaled Breath Monitoring System with Semiconductive Gas Sensors, a Gas Condenser Unit, and Gas Chromatograph Columns

Toshio Itoh; Toshio Miwa; Akihiro Tsuruta; Takafumi Akamatsu; Noriya Izu; Woosuck Shin; Jangchul Park; Toyoaki Hida; Takeshi Eda; Yasuhiro Setoguchi

Various volatile organic compounds (VOCs) in breath exhaled by patients with lung cancer, healthy controls, and patients with lung cancer who underwent surgery for resection of cancer were analyzed by gas condenser-equipped gas chromatography-mass spectrometry (GC/MS) for development of an exhaled breath monitoring prototype system involving metal oxide gas sensors, a gas condenser, and gas chromatography columns. The gas condenser-GC/MS analysis identified concentrations of 56 VOCs in the breath exhaled by the test population of 136 volunteers (107 patients with lung cancer and 29 controls), and selected four target VOCs, nonanal, acetoin, acetic acid, and propanoic acid, for use with the condenser, GC, and sensor-type prototype system. The prototype system analyzed exhaled breath samples from 101 volunteers (74 patients with lung cancer and 27 controls). The prototype system exhibited a level of performance similar to that of the gas condenser-GC/MS system for breath analysis.


Sensors | 2017

Diagnosis by Volatile Organic Compounds in Exhaled Breath from Lung Cancer Patients Using Support Vector Machine Algorithm

Yuichi Sakumura; Yutaro Koyama; Hiroaki Tokutake; Toyoaki Hida; Kazuo Sato; Toshio Itoh; Takafumi Akamatsu; Woosuck Shin

Monitoring exhaled breath is a very attractive, noninvasive screening technique for early diagnosis of diseases, especially lung cancer. However, the technique provides insufficient accuracy because the exhaled air has many crucial volatile organic compounds (VOCs) at very low concentrations (ppb level). We analyzed the breath exhaled by lung cancer patients and healthy subjects (controls) using gas chromatography/mass spectrometry (GC/MS), and performed a subsequent statistical analysis to diagnose lung cancer based on the combination of multiple lung cancer-related VOCs. We detected 68 VOCs as marker species using GC/MS analysis. We reduced the number of VOCs and used support vector machine (SVM) algorithm to classify the samples. We observed that a combination of five VOCs (CHN, methanol, CH3CN, isoprene, 1-propanol) is sufficient for 89.0% screening accuracy, and hence, it can be used for the design and development of a desktop GC-sensor analysis system for lung cancer.


Sensors | 2015

Sensing properties of Pd-loaded Co3O4 film for a ppb-level NO gas sensor.

Takafumi Akamatsu; Toshio Itoh; Noriya Izu; Woosuck Shin; Kazuo Sato

We prepared 0.1 wt%–30 wt% Pd-loaded Co3O4 by a colloidal mixing method and investigated the sensing properties of a Pd-loaded Co3O4 sensor element, such as the sensor response, 90% response time, 90% recovery time, and signal-to-noise (S/N) ratio, toward low nitric oxide (NO) gas levels in the range from 50 to 200 parts per billion. The structural properties of the Pd-loaded Co3O4 powder were investigated using X-ray diffraction analysis and transmission electron microscopy. Pd in the powder existed as PdO. The sensor elements with 0.1 wt%–10 wt% Pd content have higher sensor properties than those without any Pd content. The response of the sensor element with a 30 wt% Pd content decreased markedly because of the aggregation and poor dispersibility of the PdO particles. High sensor response and S/N ratio toward the NO gas were achieved when a sensor element with 10 wt% Pd content was used.


Sensors | 2015

Elimination of Flammable Gas Effects in Cerium Oxide Semiconductor-Type Resistive Oxygen Sensors for Monitoring Low Oxygen Concentrations

Toshio Itoh; Noriya Izu; Takafumi Akamatsu; Woosuck Shin; Yusuke Miki; Yasuo Hirose

We have investigated the catalytic layer in zirconium-doped cerium oxide, Ce0.9Zr0.1O2 (CeZr10) resistive oxygen sensors for reducing the effects of flammable gases, namely hydrogen and carbon monoxide. When the concentration of flammable gases is comparable to that of oxygen, the resistance of CeZr10 is affected by the presence of these gases. We have developed layered thick films, which consist of an oxygen sensor layer (CeZr10), an insulation layer (Al2O3), and a catalytic layer consisting of CeZr10 with 3 wt% added platinum, which was prepared via the screen printing method. The Pt-CeZr10 catalytic layer was found to prevent the detrimental effects of the flammable gases on the resistance of the sensor layer. This effect is due to the catalytic layer promoting the oxidation of hydrogen and carbon monoxide through the consumption of ambient O2 and/or the lattice oxygen atoms of the Pt-CeZr10 catalytic layer.


Sensors | 2015

CO Sensing Performance of a Micro Thermoelectric Gas Sensor with AuPtPd/SnO2 Catalyst and Effects of a Double Catalyst Structure with Pt/α-Al2O3

Tomoyo Goto; Toshio Itoh; Takafumi Akamatsu; Woosuck Shin

The CO sensing properties of a micro thermoelectric gas sensor (micro-TGS) with a double AuPtPd/SnO2 and Pt/α-Al2O3 catalyst were investigated. While several nanometer sized Pt and Pd particles were uniformly dispersed on SnO2, the Au particles were aggregated as particles measuring >10 nm in diameter. In situ diffuse reflectance Fourier transform Infrared spectroscopy (DRIFT) analysis of the catalyst showed a CO adsorption peak on Pt and Pd, but no clear peak corresponding to the interaction between CO and Au was detected. Up to 200 °C, CO combustion was more temperature dependent than that of H2, while H2 combustion was activated by repeated exposure to H2 gas during the periodic gas test. Selective CO sensing of the micro-TGS against H2 was attempted using a double catalyst structure with 0.3–30 wt% Pt/α-Al2O3 as a counterpart combustion catalyst. The sensor output of the micro-TGS decreased with increasing Pt content in the Pt/α-Al2O3 catalyst, by cancelling out the combustion heat from the AuPtPd/SnO2 catalyst. In addition, the AuPtPd/SnO2 and 0.3 wt% Pt/α-Al2O3 double catalyst sensor showed good and selective CO detection. We therefore demonstrated that our micro-TGS with double catalyst structure is useful for controlling the gas selectivity of CO against H2.


Sensors | 2014

Thermal Balance Analysis of a Micro-Thermoelectric Gas Sensor Using Catalytic Combustion of Hydrogen

Daisuke Nagai; Takafumi Akamatsu; Toshio Itoh; Noriya Izu; Woosuck Shin

A thermoelectric gas sensor (TGS) with a combustion catalyst is a calorimetric sensor that changes the small heat of catalytic combustion into a signal voltage. We analyzed the thermal balance of a TGS to quantitatively estimate the sensor parameters. The voltage signal of a TGS was simulated, and the heat balance was calculated at two sections across the thermoelectric film of a TGS. The thermal resistances in the two sections were estimated from the thermal time constants of the experimental signal curves of the TGS. The catalytic combustion heat Qcatalyst required for 1 mV of ΔVgas was calculated to be 46.1 μW. Using these parameters, we find from simulations for the device performance that the expected Qcatalyst for 200 and 1,000 ppm H2 was 3.69 μW and 11.7 μW, respectively.


Sensors | 2018

Thermoelectric Array Sensors with Selective Combustion Catalysts for Breath Gas Monitoring

Woosuck Shin; Tomoyo Goto; Daisuke Nagai; Toshio Itoh; Akihiro Tsuruta; Takafumi Akamatsu; Kazuo Sato

Inflammable breath gases such as H2 and CH4 are used as bio markers for monitoring the condition of the colon. However, their typical concentrations of below 100 ppm pose sensitivity and selectivity challenges to current gas sensing systems without the use of chromatography. We fabricated a compact, gas-selective thermoelectric array sensor (TAS) that uses micro-machined sensor devices with three different combustion catalysts to detect gases such as H2, CO, and CH4 in breath. Using Pt/Pt-W thin-film micro-heater meanders, Pd/Al2O3, Pt,Pd,Au/Co3O4, and Pt/Al2O3 catalysts were heated to 320, 200, and 125 °C, respectively, and the gas sensing performances of the TAS for each gas and for a model breath gas mixture of 100 ppm H2, 25 ppm CO, 50 ppm CH4, and 199 ppm CO2 in air were investigated. Owing to its high catalyst temperature, the Pd/Al2O3 catalyst burned all three gases, while the Pt,Pd,Au/Co3O4 burned CO and H2 and the Pt/Al2O3 burned H2 selectively. To calibrate the gas concentration of the mixture gas without the use of a gas separation tool, linear discriminant analysis was applied to measure the sensing performance of TAS. To enhance the gas selectivity against H2, a double catalyst structure was integrated into the TAS sensor.

Collaboration


Dive into the Takafumi Akamatsu's collaboration.

Top Co-Authors

Avatar

Toshio Itoh

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Woosuck Shin

Industrial Research Institute

View shared research outputs
Top Co-Authors

Avatar

Noriya Izu

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kazuo Sato

Aichi Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Daisuke Nagai

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ichiro Matsubara

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Takaomi Nakashima

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Woosuck Shin

Industrial Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge