Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takafumi Hamachi is active.

Publication


Featured researches published by Takafumi Hamachi.


Journal of Dental Research | 2011

FGF-2 Stimulates Periodontal Regeneration Results of a Multi-center Randomized Clinical Trial

Masahiro Kitamura; M. Akamatsu; Miho Machigashira; Yoshitaka Hara; Ryuji Sakagami; Takao Hirofuji; Takafumi Hamachi; Katsumasa Maeda; Makoto Yokota; Jun-ichi Kido; Toshihiko Nagata; Hidemi Kurihara; Shogo Takashiba; T. Sibutani; Mitsuo Fukuda; Toshihide Noguchi; Kazuhisa Yamazaki; Hiromasa Yoshie; K. Ioroi; Takashi Arai; Taneaki Nakagawa; K. Ito; S. Oda; Yuichi Izumi; Yorimasa Ogata; Sakuo Yamada; Hidetoshi Shimauchi; Kazushi Kunimatsu; Masamitsu Kawanami; Takeo Fujii

The efficacy of the local application of recombinant human fibroblast growth factor-2 (FGF-2) in periodontal regeneration has been investigated. In this study, a randomized, double-blind, placebo-controlled clinical trial was conducted in 253 adult patients with periodontitis. Modified Widman periodontal surgery was performed, during which 200 µL of the investigational formulation containing 0% (vehicle alone), 0.2%, 0.3%, or 0.4% FGF-2 was administered to 2- or 3-walled vertical bone defects. Each dose of FGF-2 showed significant superiority over vehicle alone (p < 0.01) for the percentage of bone fill at 36 wks after administration, and the percentage peaked in the 0.3% FGF-2 group. No significant differences among groups were observed in clinical attachment regained, scoring approximately 2 mm. No clinical safety problems, including an abnormal increase in alveolar bone or ankylosis, were identified. These results strongly suggest that topical application of FGF-2 can be efficacious in the regeneration of human periodontal tissue that has been destroyed by periodontitis.


PLOS ONE | 2008

Periodontal tissue regeneration using fibroblast growth factor -2:Randomized controlled phase II clinical trial

Masahiro Kitamura; Keisuke Nakashima; Yusuke Kowashi; Takeo Fujii; Hidetoshi Shimauchi; Takashi Sasano; Toshi Furuuchi; Mitsuo Fukuda; Toshihide Noguchi; Toshiaki Shibutani; Yukio Iwayama; Shogo Takashiba; Hidemi Kurihara; Masami Ninomiya; Jun-ichi Kido; Toshihiko Nagata; Takafumi Hamachi; Katsumasa Maeda; Yoshitaka Hara; Yuichi Izumi; Takao Hirofuji; Enyu Imai; Masatoshi Omae; Mitsuru Watanuki; Shinya Murakami

Background The options for medical use of signaling molecules as stimulators of tissue regeneration are currently limited. Preclinical evidence suggests that fibroblast growth factor (FGF)-2 can promote periodontal regeneration. This study aimed to clarify the activity of FGF-2 in stimulating regeneration of periodontal tissue lost by periodontitis and to evaluate the safety of such stimulation. Methodology/Principal Findings We used recombinant human FGF-2 with 3% hydroxypropylcellulose (HPC) as vehicle and conducted a randomized double-blinded controlled trial involving 13 facilities. Subjects comprised 74 patients displaying a 2- or 3-walled vertical bone defect as measured ≥3 mm apical to the bone crest. Patients were randomly assigned to 4 groups: Group P, given HPC with no FGF-2; Group L, given HPC containing 0.03% FGF-2; Group M, given HPC containing 0.1% FGF-2; and Group H, given HPC containing 0.3% FGF-2. Each patient underwent flap operation during which we administered 200 µL of the appropriate investigational drug to the bone defect. Before and for 36 weeks following administration, patients underwent periodontal tissue inspections and standardized radiography of the region under investigation. As a result, a significant difference (p = 0.021) in rate of increase in alveolar bone height was identified between Group P (23.92%) and Group H (58.62%) at 36 weeks. The linear increase in alveolar bone height at 36 weeks in Group P and H was 0.95 mm and 1.85 mm, respectively (p = 0.132). No serious adverse events attributable to the investigational drug were identified. Conclusions Although no statistically significant differences were noted for gains in clinical attachment level and alveolar bone gain for FGF-2 groups versus Group P, the significant difference in rate of increase in alveolar bone height (p = 0.021) between Groups P and H at 36 weeks suggests that some efficacy could be expected from FGF-2 in stimulating regeneration of periodontal tissue in patients with periodontitis. Trial Registration ClinicalTrials.gov NCT00514657


Bone | 2013

Sphingosine-1-phosphate promotes the nuclear translocation of β-catenin and thereby induces osteoprotegerin gene expression in osteoblast-like cell lines

Etsuko Matsuzaki; Shunji Hiratsuka; Takafumi Hamachi; Yoko Hashimoto; Katsumasa Higashi; Mari Kobayashi; Takao Hirofuji; Masato Hirata; Katsumasa Maeda

Sphingosine-1-phosphate (S1P) is a well-known signaling sphingolipid and bioactive lipid mediator. Recently, it was reported that S1P inhibits osteoclast differentiation and bone resorption. On the other hand, S1P effects on osteoblasts and bone formation are little known. In this study, we investigated the effects of S1P on osteoblasts, using two osteoblast-like cell lines, SaOS-2 and MC3T3-E1. S1P activated phosphatidylinositol 3-kinase (PI3K)/Akt signaling, leading to the inhibition of glycogen synthase kinase-3β and the nuclear translocation of β-catenin, followed by the increase of the transcriptional activity by β-catenin/T-cell factor complex formation in both SaOS-2 cells and MC3T3-E1 cells. The inhibitors of PI3K and Akt suppressed S1P-induced nuclear localization of β-catenin. We further investigated the effects of PI3K/Akt signaling on the Wnt/β-catenin signaling pathway, since β-catenin takes a central role in this signaling pathway. Both inhibitors for PI3K and Akt suppressed the nuclear localization of β-catenin and T-cell factor transcriptional activity induced by Wnt-3a. S1P increased the amount of osteoprotegerin at both mRNA and protein levels, and increased the activity of alkaline phosphatase, leading to the mineralization. These findings suggest that S1P activates the PI3K/Akt signaling pathway leading to the promotion of nuclear translocation of β-catenin in osteoblast-like cells, resulting in the upregulation of osteoptotegerin and osteoblast differentiation markers including alkaline phosphatase, probably relating to the inhibition of osteoclast formation and the mineralization, respectively.


Biochimica et Biophysica Acta | 1984

Effect of cAMP-elevating drugs on Ca2+ efflux and actin polymerization in peritoneal macrophages stimulated with N-formyl chemotactic peptide

Takafumi Hamachi; Masato Hirata; Toshitaka Koga

To investigate intracellular cAMP inhibitory mechanisms related to migration of guinea-pig peritoneal macrophages, we examined the effects of cAMP-elevating drugs on the Ca2+ efflux and actin polymerization in macrophages stimulated with fMet-Leu-Phe, a chemotactic peptide. The stimulation with 1 X 10(-8) M fMet-Leu-Phe enhanced the Ca2+ efflux, and induced actin polymerization. Dibutyryl cAMP, theophylline and papaverine, which continuously increased the levels of intracellular cAMP, inhibited the enhancement of Ca2+ efflux and induction of actin polymerization by fMet-Leu-Phe. On the other hand, isoproterenol, which transiently increased the cAMP level, inhibited only the early phase of Ca2+ efflux and not the actin polymerization. As additions of both cAMP and cAMP-dependent protein kinase did not modify the Ca2+ uptake of phagocytic vesicles, the inhibition of Ca2+ efflux by these drugs may be due to the inhibition of the Ca2+ release from the intracellular store site(s). The cAMP-elevating drugs increased the monomeric actin content without change in the total actin content, indicating an induction of the depolymerization of filamentous actin. From these findings, we conclude that the inhibition of macrophage migration induced by cAMP may be due to the inhibition of both the increase of intracellular Ca2+ concentration and actin polymerization. Furthermore, the intracellular levels of cAMP probably play a role in regulating actin states in the macrophages.


Journal of Periodontal Research | 2008

The role of macrophages in the periodontal regeneration using Emdogain® gel

N. Fujishiro; Hisashi Anan; Takafumi Hamachi; Katsumasa Maeda

BACKGROUND AND OBJECTIVE Emdogain gel is clinically used as a periodontal regenerative material. However, the mechanism of the regeneration has not been completely elucidated. Although many studies have focused on the regenerative effect of Emdogain on connective tissue attachment and alveolar bone, the role of macrophages and the expression of growth factors remains unclear in the regeneration stimulated by Emdogain gel in vivo. The aim of this study was to investigate the effect of Emdogain gel on the expression of cytokines and growth factors by macrophages in vivo using a newly devised rat experimental periodontitis model. MATERIAL AND METHODS Rat experimental periodontitis was induced by elevating a full-thickness gingival flap and ligating silk threads around the first molars of the mandible. At 14 d after inducing experimental periodontitis, Emdogain gel or propylene glycol alginate was applied to the furcation area. The rats were killed 7 and 14 d after treatment with propylene glycol alginate or Emdogain gel. The expression of cytokines and growth factors, and the regeneration of periodontal tissue, were examined by histochemical and immunohistochemical methods. RESULTS Fourteen days after the induction of periodontitis, the resorption of alveolar bone at furcation was observed and cytokines such as interleukin-1beta, transforming growth factor-beta1, receptor activator of nuclear factor-kappaB ligand, receptor activator of nuclear factor-kappaB and osteoprotegerin were found. In the Emdogain-treatment group, the formation of new acellular cementum and, more remarkably, recovery of the bone, were observed. The new bone formation ratio in the Emdogain treatment group was significantly higher than that of the propylene glycol alginate treatment group. Although the expression of cytokines such as interleukin-1beta, transforming growth factor-beta1, receptor activator of nuclear factor-kappaB ligand and receptor activator of nuclear factor-kappaB was very low, bone morphogenetic protein-2- and bone morphogenetic protein-4-expressing macrophages were observed close to the root, and bone morphogenetic protein-4-expressing macrophages were mainly observed close to the bone surface at the furcation in the Emdogain-treatment group. CONCLUSION These results suggest that wound-healing macrophages may express bone morphogenetic protein and play an important role in the regeneration of periodontal tissue at the furcation following the application of Emdogain gel.


Journal of Bone and Mineral Research | 2016

Randomized Placebo-Controlled and Controlled Non-Inferiority Phase III Trials Comparing Trafermin, a Recombinant Human Fibroblast Growth Factor 2, and Enamel Matrix Derivative in Periodontal Regeneration in Intrabony Defects

Masahiro Kitamura; Motoki Akamatsu; Masamitsu Kawanami; Yasushi Furuichi; Takeo Fujii; Mari Mori; Kazushi Kunimatsu; Hidetoshi Shimauchi; Yorimasa Ogata; Matsuo Yamamoto; Taneaki Nakagawa; Shuichi Sato; Koichi Ito; Yuichi Izumi; Kazuhiro Gomi; Kazuhisa Yamazaki; Hiromasa Yoshie; Mitsuo Fukuda; Toshihide Noguchi; Shogo Takashiba; Hidemi Kurihara; Toshihiko Nagata; Takafumi Hamachi; Katsumasa Maeda; Makoto Yokota; Ryuji Sakagami; Yoshitaka Hara; Kazuyuki Noguchi; Toshi Furuuchi; Takashi Sasano

We investigated the efficacy, safety, and clinical significance of trafermin, a recombinant human fibroblast growth factor (rhFGF)‐2, for periodontal regeneration in intrabony defects in Phase III trials. Study A, a multicenter, randomized, double‐blind, placebo‐controlled study, was conducted at 24 centers. Patients with periodontitis with 4‐mm and 3‐mm or deeper probing pocket depth and intrabony defects, respectively, were included. A total of 328 patients were randomly assigned (2:1) to receive 0.3% rhFGF‐2 or placebo, and 323 patients received the assigned investigational drug during flap surgery. One of the co‐primary endpoints, the percentage of bone fill at 36 weeks after drug administration, was significantly greater in the rhFGF‐2 group at 37.131% (95% confidence interval [CI], 32.7502 to 41.5123; n = 208) than it was in the placebo group at 21.579% (95% CI, 16.3571 to 26.8011; n = 100; p < 0.001). The other endpoint, the clinical attachment level regained at 36 weeks, was not significantly different between groups. Study B, a multicenter, randomized, blinded (patients and evaluators of radiographs), and active‐controlled study was conducted at 15 centers to clarify the clinical significance of rhFGF‐2. Patients with 6‐mm and 4‐mm or deeper probing pocket depth and intrabony defects, respectively, were included. A total of 274 patients were randomly assigned (5:5:2) to receive rhFGF‐2, enamel matrix derivative (EMD), or flap surgery alone. A total of 267 patients received the assigned treatment during flap surgery. The primary endpoint, the linear alveolar bone growth at 36 weeks, was 1.927 mm (95% CI, 1.6615 to 2.1920; n = 108) in the rhFGF‐2 group and 1.359 mm (95% CI, 1.0683 to 1.6495; n = 109) in the EMD group, showing non‐inferiority (a prespecified margin of 0.3 mm) and superiority of rhFGF‐2 to EMD. Safety problems were not identified in either study. Therefore, trafermin is an effective and safe treatment for periodontal regeneration in intrabony defect, and its efficacy was superior in rhFGF‐2 compared to EMD treatments.


Biochimica et Biophysica Acta | 1986

Origin of intracellular calcium and quantitation of mobilizable calcium in neutrophils stimulated with chemotactic peptide

Takafumi Hamachi; Masato Hirata; Toshitaka Koga

The origin and amount of mobilized Ca2+ in chemotactic peptide-stimulated guinea pig neutrophils were examined using biochemical techniques. The total amount of releasable Ca2+ by 20 microM A23187 from the unstimulated intact cells was 0.91 nmol/4 X 10(6) cells, as assessed by change in absorbance of the antipyrylazo III-Ca2+ complex. Two types of internal vesicular Ca2+ pool, mitochondrial and non-mitochondrial pool were identified in the saponin-permeabilized cells. The total amount of releasable Ca2+ was comparable to that accumulated by the non-mitochondrial pool at (1-2) X 10(-7) M of a free Ca2+ concentration. The mitochondrial uncoupler, capable of releasing Ca2+ from the mitochondrial pool, neither modified the basal cytosolic free Ca2+ in quin 2-loaded cells nor caused a Ca2+ efflux from the intact cells. These results suggest that the releasable Ca2+ may be located in the non-mitochondrial pool of unstimulated intact cells, and the mitochondrial pool contains little releasable Ca2+. The addition of fMet-Leu-Phe increased the cytosolic free Ca2+ by two processes: Ca2+ mobilization from internal stores and Ca2+ influx through the surface membrane. The Ca2+ mobilized and effluxed from the intact cells by stimulation with the maximal doses of fMet-Leu-Phe was estimated to be 0.27 nmol/4 X 10(6) cells. Almost equal amounts were released by the maximal doses of inositol 1,4,5-trisphosphate from the non-mitochondrial pool of saponin-treated cells that had accumulated Ca2+ at a free Ca2+ concentration of 1.4 X 10(-7) M. The mechanism related to the Ca2+ influx by fMet-Leu-Phe stimulation was also examined. The addition of nifedipine or phosphatidic acid did not affect the change in the cytosolic free Ca2+ induced by fMet-Leu-Phe, thereby suggesting that the receptor-mediated Ca2+ channel may be involved in the Ca2+ influx.


Journal of Endodontics | 1995

Detection of interleukin-1β mRNA in rat periapical lesions

Takafumi Hamachi; Hisashi Anan; Akifumi Akamine; Osamu Fujise; Katsumasa Maeda

Cells expressing interleukin-1β (IL-1β) mRNA were demonstrated by in situ hybridization in rat periapical lesions. A great number of osteoclasts with significant tartrate-resistant acid phosphatase activity were observed on the bone surfaces, and numerous IL-1β mRNA-expressing cells were widely distributed in the periodontal ligaments. IL-1β mRNA-expressing cells were mainly observed around the blood vessels in the vicinity of the bone resorption sites and occasionally found near the osteoblasts. Immunohistochemistry and enzyme histochemistry assays showed that IL-1β mRNA-expressing cells were not bone cells, but that they had the characteristic features of macrophages. These results suggested that macrophages may contribute to the production of IL-1β and play an important role in activation of osteoclastic bone resorption.


Journal of Endodontics | 1994

A histochemical study of the behavior of macrophages during experimental apical periodontitis in rats

Akifumi Akamine; Hisashi Anan; Takafumi Hamachi; Katsumasa Maeda

The behavior of macrophages from experimentally induced periapical lesions of rats was studied in paraffin sections using nonspecific esterase and a monoclonal antibody, ED1. Macrophages were seen near the regularly arranged osteoblasts in controls and the detached osteoblasts at the initiation phase of bone resorption. In addition, numerous macrophages were widely distributed throughout the periodontium at the activation phase of bone resorption. On the other hand, macrophages were rarely seen near the bone formation surfaces, but large numbers of macrophages were localized in microabscess at the activation phase of bone formation. It is suggested that macrophages may play an important role in activation of osteoclastic bone resorption and inhibition of complete bone repair in bone remodeling during experimental apical periodontitis.


Journal of Dental Research | 2004

Deficient Cell Proliferation in Palatal Shelf Mesenchyme of CL/Fr Mouse Embryos

Y. Sasaki; S. Tanaka; Takafumi Hamachi; Y. Taya

How secondary palate formation is affected in the cleft lip genotype remains poorly understood. The purpose of this study was to analyze regional patterns of cell proliferation in CL/Fr mouse embryos with or without cleft lip. Pairs of palatal shelves were dissected at E13.5 from CL/Fr normal embryos (CL/Fr-N), CL/Fr embryos with bilateral cleft lip (CL/Fr-BCL), and a control strain of C57BL embryos (C57BL). The explants were examined histologically after 48 hrs of organ culture. Cell kinetics for proliferation in the palatal shelves was examined at E13.5 by the bromodeoxyuridine method in vivo. The CL/Fr-BCL palates fused as well as the CL/Fr-N palates in vitro. There were inter-group differences in the absolute number of BrdU-positive cells and the ratio of positive/(positive+negative) cells in the palate’s mesenchyme (C57BL > CL/Fr-N > CL/Fr-BCL) and epithelium (C57BL > CL/Fr-N = CL/Fr-BCL). These findings indicate that a cleft palate follows reduced cell proliferation of secondary palatal mesenchyme in CL/Fr mice.

Collaboration


Dive into the Takafumi Hamachi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge