Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takafumi Hara is active.

Publication


Featured researches published by Takafumi Hara.


Nature | 2012

Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human

Atsuhiko Ichimura; Akira Hirasawa; Odile Poulain-Godefroy; Amélie Bonnefond; Takafumi Hara; Loic Yengo; Ikuo Kimura; Audrey Leloire; Ning Liu; Keiko Iida; Hélène Choquet; Philippe Besnard; Cécile Lecoeur; Sidonie Vivequin; Kumiko Ayukawa; Masato Takeuchi; Kentaro Ozawa; Maithe Tauber; Claudio Maffeis; Anita Morandi; Raffaella Buzzetti; Paul Elliott; Anneli Pouta; Marjo-Riitta Jarvelin; Antje Körner; Wieland Kiess; Marie Pigeyre; Roberto Caiazzo; Wim Van Hul; Luc Van Gaal

Free fatty acids provide an important energy source as nutrients, and act as signalling molecules in various cellular processes. Several G-protein-coupled receptors have been identified as free-fatty-acid receptors important in physiology as well as in several diseases. GPR120 (also known as O3FAR1) functions as a receptor for unsaturated long-chain free fatty acids and has a critical role in various physiological homeostasis mechanisms such as adipogenesis, regulation of appetite and food preference. Here we show that GPR120-deficient mice fed a high-fat diet develop obesity, glucose intolerance and fatty liver with decreased adipocyte differentiation and lipogenesis and enhanced hepatic lipogenesis. Insulin resistance in such mice is associated with reduced insulin signalling and enhanced inflammation in adipose tissue. In human, we show that GPR120 expression in adipose tissue is significantly higher in obese individuals than in lean controls. GPR120 exon sequencing in obese subjects reveals a deleterious non-synonymous mutation (p.R270H) that inhibits GPR120 signalling activity. Furthermore, the p.R270H variant increases the risk of obesity in European populations. Overall, this study demonstrates that the lipid sensor GPR120 has a key role in sensing dietary fat and, therefore, in the control of energy balance in both humans and rodents.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41)

Ikuo Kimura; Daisuke Inoue; Takeshi Maeda; Takafumi Hara; Atsuhiko Ichimura; Satoshi Miyauchi; Makio Kobayashi; Akira Hirasawa; Gozoh Tsujimoto

The maintenance of energy homeostasis is essential for life, and its dysregulation leads to a variety of metabolic disorders. Under a fed condition, mammals use glucose as the main metabolic fuel, and short-chain fatty acids (SCFAs) produced by the colonic bacterial fermentation of dietary fiber also contribute a significant proportion of daily energy requirement. Under ketogenic conditions such as starvation and diabetes, ketone bodies produced in the liver from fatty acids are used as the main energy sources. To balance energy intake, dietary excess and starvation trigger an increase or a decrease in energy expenditure, respectively, by regulating the activity of the sympathetic nervous system (SNS). The regulation of metabolic homeostasis by glucose is well recognized; however, the roles of SCFAs and ketone bodies in maintaining energy balance remain unclear. Here, we show that SCFAs and ketone bodies directly regulate SNS activity via GPR41, a Gi/o protein-coupled receptor for SCFAs, at the level of the sympathetic ganglion. GPR41 was most abundantly expressed in sympathetic ganglia in mouse and humans. SCFA propionate promoted sympathetic outflow via GPR41. On the other hand, a ketone body, β-hydroxybutyrate, produced during starvation or diabetes, suppressed SNS activity by antagonizing GPR41. Pharmacological and siRNA experiments indicated that GPR41-mediated activation of sympathetic neurons involves Gβγ-PLCβ-MAPK signaling. Sympathetic regulation by SCFAs and ketone bodies correlated well with their respective effects on energy consumption. These findings establish that SCFAs and ketone bodies directly regulate GPR41-mediated SNS activity and thereby control body energy expenditure in maintaining metabolic homeostasis.


Prostaglandins & Other Lipid Mediators | 2009

Free fatty acid receptors act as nutrient sensors to regulate energy homeostasis

Atsuhiko Ichimura; Akira Hirasawa; Takafumi Hara; Gozoh Tsujimoto

Free fatty acids (FFAs) have been demonstrated to act as ligands of several G-protein-coupled receptors (GPCRs) (FFAR1, FFAR2, FFAR3, GPR84, and GPR120). These fatty acid receptors are proposed to play critical roles in a variety of types of physiological homeostasis. FFAR1 and GPR120 are activated by medium- and long-chain FFAs. GPR84 is activated by medium-chain, but not long-chain, FFAs. In contrast, FFAR2 and FFAR3 are activated by short-chain FFAs. FFAR1 is expressed mainly in pancreatic beta-cells and mediates insulin secretion, whereas GPR120 is expressed abundantly in the intestine and promotes the secretion of glucagon-like peptide-1 (GLP-1). FFAR3 is expressed in enteroendocrine cells and regulates host energy balance through effects that are dependent upon the gut microbiota. In this review, we summarize the identification, structure, and pharmacology of these receptors and present an essential overview of the current understanding of their physiological roles.


Naunyn-schmiedebergs Archives of Pharmacology | 2009

Novel selective ligands for free fatty acid receptors GPR120 and GPR40.

Takafumi Hara; Akira Hirasawa; Qi Sun; Keiko Sadakane; Chisato Itsubo; Tomoyo Iga; Tetsuya Adachi; Taka-aki Koshimizu; Toshihiro Hashimoto; Yoshinori Asakawa; Gozoh Tsujimoto

GPR120 and GPR40 are G-protein-coupled receptors whose endogenous ligands are medium- and long-chain free fatty acids, and they are thought to play an important physiological role in insulin release. Despite recent progress in understanding their roles, much still remains unclear about their pharmacology, and few specific ligands for GPR120 and GPR40 besides medium- to long-chain fatty acids have been reported so far. To identify new selective ligands for these receptors, more than 80 natural compounds were screened, together with a reference compound MEDICA16, which is known to activate GPR40, by monitoring the extracellular regulated kinase (ERK) and [Ca2+]i responses in inducible and stable expression cell lines for GPR40 and GPR120, respectively. MEDICA16 selectively activated [Ca2+]i response in GPR40-expressing cells but not in GPR120-expressing cells. Among the natural compounds tested, grifolin derivatives, grifolic acid and grifolic acid methyl ether, promoted ERK and [Ca2+]i responses in GPR120-expressing cells, but not in GPR40-expressing cells, and inhibited the α-linolenic acid (LA)-induced ERK and [Ca2+]i responses in GPR120-expressing cells. Interestingly, in accordance with the pharmacological profiles of these compounds, similar profiles of glucagon-like peptide-1 secretion were seen for mouse enteroendocrine cell line, STC-1 cells, which express GPR120 endogenously. Taken together, these studies identified a selective GPR40 agonist and several GPR120 partial agonists. These compounds would be useful probes to further investigate the physiological and pharmacological functions of GPR40 and GPR120.


Journal of Pharmaceutical Sciences | 2011

Free fatty acid receptors FFAR1 and GPR120 as novel therapeutic targets for metabolic disorders.

Takafumi Hara; Akira Hirasawa; Atsuhiko Ichimura; Ikuo Kimura; Gozoh Tsujimoto

Free fatty acids (FFAs) are not only essential nutritional components, but they also act as signaling molecules in various physiological processes. Recently, a G-protein-coupled receptor deorphanizing strategy has successfully identified a family of receptors that are activated by FFAs. FFA receptors (FFARs) are proposed to play critical roles in a variety of physiological and pathophysiological processes, especially in metabolic disorders. Among the FFARs, FFAR1 (GPR40) and GPR120 are activated by medium- and long-chain FFAs. FFAR1 facilitates glucose-stimulated insulin secretion from pancreatic β-cells, whereas GPR120 regulates the secretion of glucagon-like peptide-1 in the intestine, as well as insulin sensitivity in macrophages. Because these receptors are potential therapeutic targets for metabolic disorders such as type 2 diabetes, selective ligands have been developed. In this review, we discuss recent advances in the identification of ligands, structure activity relationships, and pharmacological characterization of FFAR1 and GPR120, and we present a summary of recent progress in understanding their physiological roles and their potential as drug targets.


Naunyn-schmiedebergs Archives of Pharmacology | 2009

Distribution and regulation of protein expression of the free fatty acid receptor GPR120

Satoshi Miyauchi; Akira Hirasawa; Tomoyo Iga; Ning Liu; Chisato Itsubo; Keiko Sadakane; Takafumi Hara; Gozoh Tsujimoto

GPR120 is a G-protein-coupled receptor whose endogenous ligands have recently been identified as free fatty acids. It has been implicated as playing an important role in the control of lipid and glucose metabolism by regulating the secretion of glucagon-like peptide-1 and cholecystokinin. We have developed an antibody against the extracellular domain of GPR120. The specificity of the antibody was demonstrated by immunoprecipitation, Western blotting, flow cytometry, and immunocytochemistry using GPR120-transfected cells. Immunoreactivity for GPR120 was abundant in the mouse large intestine, lung, and adipose tissue. Furthermore, we found that the expression of GPR120 protein was up-regulated during the adipogenic differentiation of 3T3-L1 cells, which corresponded well with changes in mRNA expression. The anti-GPR120 antibody will be of value for the further study of the function of this nutrient-sensing receptor.


Biochimica et Biophysica Acta | 2014

Role of free fatty acid receptors in the regulation of energy metabolism.

Takafumi Hara; Daiji Kashihara; Atsuhiko Ichimura; Ikuo Kimura; Gozoh Tsujimoto; Akira Hirasawa

Free fatty acids (FFAs) are energy-generating nutrients that act as signaling molecules in various cellular processes. Several orphan G protein-coupled receptors (GPCRs) that act as FFA receptors (FFARs) have been identified and play important physiological roles in various diseases. FFA ligands are obtained from food sources and metabolites produced during digestion and lipase degradation of triglyceride stores. FFARs can be grouped according to ligand profiles, depending on the length of carbon chains of the FFAs. Medium- and long-chain FFAs activate FFA1/GPR40 and FFA4/GPR120. Short-chain FFAs activate FFA2/GPR43 and FFA3/GPR41. However, only medium-chain FFAs, and not long-chain FFAs, activate GPR84 receptor. A number of pharmacological and physiological studies have shown that these receptors are expressed in various tissues and are primarily involved in energy metabolism. Because an impairment of these processes is a part of the pathology of obesity and type 2 diabetes, FFARs are considered as key therapeutic targets. Here, we reviewed recently published studies on the physiological functions of these receptors, primarily focusing on energy homeostasis.


Molecular Systems Biology | 2014

Analysis of multiple compound–protein interactions reveals novel bioactive molecules

Hiroaki Yabuuchi; Satoshi Niijima; Hiromu Takematsu; Tomomi Ida; Takatsugu Hirokawa; Takafumi Hara; Teppei Ogawa; Yohsuke Minowa; Gozoh Tsujimoto; Yasushi Okuno

The discovery of novel bioactive molecules advances our systems‐level understanding of biological processes and is crucial for innovation in drug development. For this purpose, the emerging field of chemical genomics is currently focused on accumulating large assay data sets describing compound–protein interactions (CPIs). Although new target proteins for known drugs have recently been identified through mining of CPI databases, using these resources to identify novel ligands remains unexplored. Herein, we demonstrate that machine learning of multiple CPIs can not only assess drug polypharmacology but can also efficiently identify novel bioactive scaffold‐hopping compounds. Through a machine‐learning technique that uses multiple CPIs, we have successfully identified novel lead compounds for two pharmaceutically important protein families, G‐protein‐coupled receptors and protein kinases. These novel compounds were not identified by existing computational ligand‐screening methods in comparative studies. The results of this study indicate that data derived from chemical genomics can be highly useful for exploring chemical space, and this systems biology perspective could accelerate drug discovery processes.


Molecular Pharmacology | 2010

Structure-Activity Relationships of GPR120 Agonists Based on a Docking Simulation

Qi Sun; Akira Hirasawa; Takafumi Hara; Ikuo Kimura; Tetsuya Adachi; Takeo Awaji; Masaji Ishiguro; Takayoshi Suzuki; Naoki Miyata; Gozoh Tsujimoto

GPR120 is a G protein-coupled receptor expressed preferentially in the intestinal tract and adipose tissue, that has been implicated in mediating free fatty acid-stimulated glucagon-like peptide-1 (GLP-1) secretion. To develop GPR120-specific agonists, a series of compounds (denoted as NCG compounds) derived from a peroxisome proliferator-activated receptor γ agonist were synthesized, and their structure-activity relationships as GPR120 agonists were explored. To examine the agonistic activities of these newly synthesized NCG compounds, and of compounds already shown to have GPR120 agonistic activity (grifolic acid and MEDICA16), we conducted docking simulation in a GPR120 homology model that was developed on the basis of a photoactivated model derived from the crystal structure of bovine rhodopsin. We calculated the hydrogen bonding energies between the compounds and the GPR120 model. These energies correlated well with the GPR120 agonistic activity of the compounds (R2 = 0.73). NCG21, the NCG compound with the lowest calculated hydrogen bonding energy, showed the most potent extracellular signal-regulated kinase (ERK) activation in a cloned GPR120 system. Furthermore, NCG21 potently activated ERK, intracellular calcium responses and GLP-1 secretion in murine enteroendocrine STC-1 cells that express GPR120 endogenously. Moreover, administration of NCG21 into the mouse colon caused an increase in plasma GLP-1 levels. Taken together, our present study showed that a docking simulation using a GPR120 homology model might be useful to predict the agonistic activity of compounds.


Reviews of Physiology Biochemistry and Pharmacology | 2013

Free Fatty Acid Receptors and Their Role in Regulation of Energy Metabolism

Takafumi Hara; Ikuo Kimura; Daisuke Inoue; Atsuhiko Ichimura; Akira Hirasawa

The free fatty acid receptor (FFAR) is a G protein-coupled receptor (GPCR) activated by free fatty acids (FFAs), which play important roles not only as essential nutritional components but also as signaling molecules in numerous physiological processes. In the last decade, FFARs have been identified by the GPCR deorphanization strategy derived from the human genome database. To date, several FFARs have been identified and characterized as critical components in various physiological processes. FFARs are categorized according to the chain length of FFA ligands that activate each FFAR; FFA2 and FFA3 are activated by short chain FFAs, GPR84 is activated by medium-chain FFAs, whereas FFA1 and GPR120 are activated by medium- or long-chain FFAs. FFARs appear to act as physiological sensors for food-derived FFAs and digestion products in the gastrointestinal tract. Moreover, they are considered to be involved in the regulation of energy metabolism mediated by the secretion of insulin and incretin hormones and by the regulation of the sympathetic nerve systems, taste preferences, and inflammatory responses related to insulin resistance. Therefore, because FFARs can be considered to play important roles in physiological processes and various pathophysiological processes, FFARs have been targeted in therapeutic strategies for the treatment of metabolic disorders including type 2 diabetes and metabolic syndrome. In this review, we present a summary of recent progress regarding the understanding of their physiological roles in the regulation of energy metabolism and their potential as therapeutic targets.

Collaboration


Dive into the Takafumi Hara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ikuo Kimura

Tokyo University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge