Takafumi Kuroda
Sapporo Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Takafumi Kuroda.
PLOS ONE | 2013
Takafumi Kuroda; Yoshihiko Hirohashi; Toshihiko Torigoe; Kazuyo Yasuda; Akari Takahashi; Hiroko Asanuma; Rena Morita; Tasuku Mariya; Takuya Asano; Masahito Mizuuchi; Tsuyoshi Saito; Noriyuki Sato
Cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) are defined as a small population of cancer cells that have high tumorigenicity. Furthermore, CSCs/CICs are resistant to several cancer therapies, and CSCs/CICs are therefore thought to be responsible for cancer recurrence after treatment and distant metastasis. In epithelial ovarian cancer (EOC) cases, disease recurrence after chemotherapy is frequently observed, suggesting ovarian CSCs/CICs are involved. There are four major histological subtypes in EOC, and serous adenocarcinoma and clear cell adenocarcinoma are high-grade malignancies. We therefore analyzed ovarian CSCs/CICs from ovarian carcinoma cell lines (serous adenocarcinoma and clear cell adenocarcinoma) and primary ovarian cancer cells in this study. We isolated ovarian CSCs/CICs as an aldehyde dehydrogenase 1 high (ALDH1high) population from 6 EOC cell lines (3 serous adenocarcinomas and 3 clear cell adenocarcinomas) by the ALDEFLUOR assay. ALDH1high cells showed greater sphere-forming ability, higher tumorigenicity and greater invasive capability, indicating that ovarian CSCs/CICs are enriched in ALDH1high cells. ALDH1high cells could also be isolated from 8 of 11 primary ovarian carcinoma samples. Immunohistochemical staining revealed that higher ALDH1 expression levels in ovary cancer cases are related to poorer prognosis in both serous adenocarcinoma cases and clear cell adenocarcinoma cases. Taken together, the results indicate that ALDH1 is a marker for ovarian CSCs/CICs and that the expression level of ALDH1 might be a novel biomarker for prediction of poor prognosis.
Oncotarget | 2016
Takuya Asano; Yoshihiko Hirohashi; Toshihiko Torigoe; Tasuku Mariya; Ryota Horibe; Takafumi Kuroda; Yuta Tabuchi; Hiroshi Saijo; Kazuyo Yasuda; Masahito Mizuuchi; Akari Takahashi; Hiroko Asanuma; Tadashi Hasegawa; Tsuyoshi Saito; Noriyuki Sato
Cervical cancer is a major cause of cancer death in females worldwide. Cervical cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) are resistant to conventional radiotherapy and chemotherapy, and CSCs/CICs are thought to be responsible for recurrence. Eradication of CSCs/CICs is thus essential to cure cervical cancer. In this study, we isolated cervical CSCs/CICs by sphere culture, and we identified a cancer testis (CT) antigen, CTCFL/BORIS, that is expressed in cervical CSCs/CICs. BORIS has 23 mRNA isoform variants classified by 6 subfamilies (sfs), and they encode 17 different BORIS peptides. BORIS sf1 and sf4 are expressed in both CSCs/CICs and non-CSCs/CICs, whereas BORIS sf6 is expressed only in CSCs/CICs. Overexpression of BORIS sf6 in cervical cancer cells increased sphere formation and tumor-initiating ability compared with those in control cells, whereas overexpression of BORIS sf1 and BORIS sf4 resulted in only slight increases. Thus, BORIS sf6 is a cervical CSC/CIC-specific subfamily and has a role in the maintenance of cervical CSCs/CICs. BORIS sf6 contains a specific c-terminal domain (C34), and we identified a human leukocyte antigen (HLA)-A2-restricted antigenic peptide, BORIS C34_24(9) encoded by BORIS sf6. A BORIS C34_24(9)-specific cytotoxic T cell (CTL) clone showed cytotoxicity for BORIS sf6-overexpressing cervical cancer cells. Furthermore, the CTL clone significantly suppressed sphere formation of CaSki cells. Taken together, the results indicate that the CT antigen BORIS sf6 is specifically expressed in cervical CSCs/CICs, that BORIS sf6 has a role in the maintenance of CSCs/CICs, and that BORIS C34_24(9) peptide is a promising candidate for cervical CSC/CIC-targeting immunotherapy.
Cancer immunology research | 2014
Tasuku Mariya; Yoshihiko Hirohashi; Toshihiko Torigoe; Takuya Asano; Takafumi Kuroda; Kazuyo Yasuda; Masahito Mizuuchi; Tomoko Sonoda; Tsuyoshi Saito; Noriyuki Sato
Mariya and colleagues analyzed 122 cases of epithelial ovarian cancer (EOC) and identified low expression of HLA class I and low intraepithelial CTL infiltration as independent prognostic factors for poor overall survival for patients with advanced EOC; low HLA class I expression was correlated with platinum resistance. Epithelial ovarian cancer (EOC) is one of the most deadly carcinomas in females. Immune systems can recognize EOCs; however, a defect of human leukocyte antigen (HLA) class I expression is known to be a major mechanism for escape from immune systems, resulting in poor prognosis. The purpose of this study is to identify novel correlations between immunologic responses and other clinical factors. We investigated the expression of immunologic components in 122 cases of EOCs for which surgical operations were performed between 2001 and 2011. We immunohistochemically stained EOC specimens using an anti-pan HLA class I monoclonal antibody (EMR8-5) and anti-CD3, -CD4, and -CD8 antibodies, and we analyzed correlations between immunologic parameters and clinical factors. In multivariate analysis that used the Cox proportional hazards model, independent prognostic factors for overall survival in advanced EOCs included low expression level of HLA class I [risk ratio (RR), 1.97; 95% confidence interval (CI), 1.01–3.83; P = 0.046] and loss of intraepithelial cytotoxic T lymphocyte (CTL) infiltration (RR, 2.11; 95% CI, 1.06–4.20; P = 0.033). Interestingly, almost all platinum-resistant cases showed a significantly low rate of intraepithelial CTL infiltration in the χ2 test (positive vs. negative: 9.0% vs. 97.7%; P < 0.001). Results from a logistic regression model revealed that low CTL infiltration rate was an independent factor of platinum resistance in multivariate analysis (OR, 3.77; 95% CI, 1.08–13.12; P = 0.037). Platinum-resistant EOCs show poor immunologic responses. The immune escape system of EOCs may be one of the mechanisms of platinum resistance. Cancer Immunol Res; 2(12); 1220–9. ©2014 AACR.
Laboratory Investigation | 2014
Kazuyo Yasuda; Toshihiko Torigoe; Tasuku Mariya; Takuya Asano; Takafumi Kuroda; Junichi Matsuzaki; Kanae Ikeda; Makoto Yamauchi; Makoto Emori; Hiroko Asanuma; Tadashi Hasegawa; Tsuyoshi Saito; Yoshihiko Hirohashi; Noriyuki Sato
Cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) are defined as a small population of cells within cancer that contribute to cancer initiation and progression. Cancer-associated fibroblasts (CAFs) are stromal fibroblasts surrounding tumor cells, and they have important roles in tumor growth and tumor progression. It has been suggested that stromal fibroblasts and CSCs/CICs might mutually cooperate to enhance their growth and tumorigenic capacity. In this study, we investigated the effects of fibroblasts on tumor-initiating capacity and stem-like properties of ovarian CSCs/CICs. CSCs/CICs were isolated from the ovarian carcinoma cell line HTBoA as aldehyde dehydrogenase 1 high (ALDH1high) population by the ALDEFLUOR assay. Histological examination of tumor tissues derived from ALDH1high cells revealed few fibrous stroma, whereas those derived from fibroblast-mixed ALDH1high cells showed abundant fibrous stroma formation. In vivo tumor-initiating capacity and in vitro sphere-forming capacity of ALDH1high cells were enhanced in the presence of fibroblasts. Gene expression analysis revealed that fibroblast-mixed ALDH1high cells had enhanced expression of fibroblast growth factor 4 (FGF4) as well as stemness-associated genes such as SOX2 and POU5F1. Sphere-forming capacity of ALDH1high cells was suppressed by small-interfering RNA (siRNA)-mediated knockdown of FGFR2, the receptor for FGF4 which was expressed preferentially in ALDH1high cells. Taken together, the results indicate that interaction of fibroblasts with ovarian CSCs/CICs enhanced tumor-initiating capacity and stem-like properties through autocrine and paracrine FGF4-FGFR2 signaling.
Experimental and Molecular Pathology | 2012
Masahito Mizuuchi; Yoshihiko Hirohashi; Toshihiko Torigoe; Takafumi Kuroda; Kazuyo Yasuda; Yoshitaka Shimizu; Tsuyoshi Saito; Noriyuki Sato
The aim of this study was to establish an efficient human papilloma virus (HPV) type 16-targeting cancer immunotherapy. Persistent high-risk HPV infection causes cervical intra-epithelial neoplasia (CIN) and subsequent cervical carcinoma. HPV type16 (HPV16) is one of the common carcinogenic types and is found in about 50% of invasive cervical carcinomas. HPV16-derived viral proteins E6 and E7 are expressed in cancerous cells through the progression of the disease and have a role in carcinogenesis but are not expressed in normal cells. Thus, these proteins are regarded as ideal antigens for cervical carcinoma immunotherapy. In this study, we generated a novel HPV 16 E6 and E7 gene plasmid containing oligomannose liposomes (OML-HPV). We compared the cytotoxic T lymphocyte (CTL) induction efficiency of OML-HPV and that of standard liposome-HPV16 E6 and E7 DNA complex. HPV16 E6-specific CTLs could be generated from HPV 16-positive cervical carcinoma patients peripheral blood mononuclear cells (PBMCs) by stimulating OML-HPV, but could not by stimulating standard liposome-HPV 16 E6, E7 DNA complex. Furthermore, we screened HLA-A24-restricted HPV16 E6- and E7-derived peptides, and found that one E6-derived peptide (E6 66-74) showed the highest immunogenicity with ELISPOT assay from 100% of HPV16-positive patients (4 out of 4). On the other hand, other E6- or E7-derived peptides, including E6 49-57, E6 82-90, E6 87-95, E6 98-106 and E7 83-93, showed less frequent reactivity. These results indicate that OML-HPV is a more effective approach than DNA vaccination using standard liposomes, and that a novel HLA-A24-restricted peptide, E6 66-74, might be a suitable target of cervical cancer immunotherapy.
Oncotarget | 2016
Tasuku Mariya; Yoshihiko Hirohashi; Toshihiko Torigoe; Yuta Tabuchi; Takuya Asano; Hiroshi Saijo; Takafumi Kuroda; Kazuyo Yasuda; Masahito Mizuuchi; Tsuyoshi Saito; Noriyuki Sato
Epithelial ovarian cancer (EOC) is one of the most lethal cancers in females. Cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) have been reported to be origin of primary and recurrent cancers and to be resistant to several treatments. In this study, we identified matrix metalloproteinase-10 (MMP10) is expressed in CSCs/CICs of EOC. An immunohistochemical study revealed that a high expression level of MMP10 is a marker for poor prognosis and platinum resistance in multivariate analysis. MMP10 gene overexpression experiments and MMP10 gene knockdown experiments using siRNAs revealed that MMP10 has a role in the maintenance of CSCs/CICs in EOC and resistance to platinum reagent. Furthermore, MMP10 activate canonical Wnt signaling by inhibiting noncanonical Wnt signaling ligand Wnt5a. Therefore, MMP10 is a novel marker for CSCs/CICs in EOC and that targeting MMP10 is a novel promising approach for chemotherapy-resistant CSCs/CICs in EOC.
Oncotarget | 2017
Kazuyo Yasuda; Yoshihiko Hirohashi; Tasuku Mariya; Aiko Murai; Yuta Tabuchi; Takafumi Kuroda; Hiroki Kusumoto; Akari Takaya; Eri Yamamoto; Terufumi Kubo; Munehide Nakatsugawa; Takayuki Kanaseki; Tomohide Tsukahara; Yasuaki Tamura; Hiroshi Hirano; Tadashi Hasegawa; Tsuyoshi Saito; Noriyuki Sato; Toshihiko Torigoe
Cancer stem-like cells (CSCs)/ cancer-initiating cells (CICs) are defined by their higher tumor-initiating ability, self-renewal capacity and differentiation capacity. CSCs/CICs are resistant to several therapies including chemotherapy and radiotherapy. CSCs/CICs thus are thought to be responsible for recurrence and distant metastasis, and elucidation of the molecular mechanisms of CSCs/CICs are essential to design CSC/CIC-targeting therapy. In this study, we analyzed the molecular aspects of gynecological CSCs/CICs. Gynecological CSCs/CICs were isolated as ALDH1high cell by Aldefluor assay. The gene expression profile of CSCs/CICs revealed that several genes related to stress responses are preferentially expressed in gynecological CSCs/CICs. Among the stress response genes, a small heat shock protein HSP27 has a role in the maintenance of gynecological CSCs/CICs. The upstream transcription factor of HSP27, heat shock factior-1 (HSF1) was activated by phosphorylation at serine 326 residue (pSer326) in CSCs/CICs, and phosphorylation at serine 326 residue is essential for induction of HSP27. Immunohistochemical staining using clinical ovarian cancer samples revealed that higher expressions of HSF1 pSer326 was related to poorer prognosis. These findings indicate that activation of HSF1 at Ser326 residue and transcription of HSP27 is related to the maintenance of gynecological CSCs/CICs.
Biochemical and Biophysical Research Communications | 2016
Kazuyo Yasuda; Yoshihiko Hirohashi; Takafumi Kuroda; Akari Takaya; Terufumi Kubo; Takayuki Kanaseki; Tomohide Tsukahara; Tadashi Hasegawa; Tsuyoshi Saito; Noriyuki Sato; Toshihiko Torigoe
Cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) are defined as small subpopulation of cancer cells that are endowed with higher tumor-initiating ability. CSCs/CICs are resistant to standard cancer therapies including chemotherapy and radiotherapy, and they are thus thought to be responsible for cancer recurrence and metastasis. Therefore, elucidation of molecular mechanisms of CSCs/CICs is essential to cure cancer. In this study, we analyzed the gene expression profiles of gynecological CSCs/CICs isolated as aldehyde dehydrogenase high (ALDH(high)) cells, and found that MAPK13, PTTG1IP, CAPN1 and UBQLN2 were preferentially expressed in CSCs/CICs. MAPK13 is expressed in uterine, ovary, stomach, colon, liver and kidney cancer tissues at higher levels compared with adjacent normal tissues. MAPK13 gene knockdown using siRNA reduced the ALDH(high) population and abrogated the tumor-initiating ability. These results indicate that MAPK13 is expressed in gynecological CSCs/CICs and has roles in the maintenance of CSCs/CICs and tumor-initiating ability, and MAPK13 might be a novel molecular target for treatment-resistant CSCs/CICs.
Reproductive Medicine and Biology | 2018
Yoshika Kuno; Tsuyoshi Baba; Takafumi Kuroda; Mizue Teramoto; Naoki Hirokawa; Toshiaki Endo; Tsuyoshi Saito
A 32 year old woman was referred because of secondary amenorrhea, hirsutism, and voice deepening.
日本産科婦人科學會雜誌 | 2016
Takafumi Kuroda; Seiro Satohisa; Tasuku Mariya; Shota Shinkai; Toshiaki Endo; Tsuyoshi Saito