Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takafumi Taguchi is active.

Publication


Featured researches published by Takafumi Taguchi.


Life Sciences | 2008

Predominant role of 25OHD in the negative regulation of PTH expression: Clinical relevance for hypovitaminosis D

Masayuki Kawahara; Yasumasa Iwasaki; Kazushige Sakaguchi; Takafumi Taguchi; Mitsuru Nishiyama; Takeshi Nigawara; Makoto Tsugita; Machiko Kambayashi; Toshihoro Suda; Kozo Hashimoto

Although severe deficiency of bioactive vitamin D (1,25OH2D) causes rickets, mild insufficiency of the hormone, known as hypovitaminosis D, is responsible for the occurrence of secondary hyperparathyroidism and osteoporosis. To clarify the pathophysiology of the disease, we studied the negative feedback effect of 1,25OH2D and its precursor 25OHD on the transcriptional activity of parathyroid hormone (PTH) gene using the PT-r parathyroid cell line. We found that PT-r cells express endogenous 1alpha-hydroxylase as well as PTH mRNAs. We also found the potent suppressive effect of physiological concentration of 25OHD on the transcriptional activity of PTH gene. A similar effect was obtained with 1,25OH2D but only with pharmacological concentration. Interestingly, the effect of 25OHD was completely abolished when the cells were treated with 1alpha-hydroxylase inhibitor ketoconazole. These results suggest that the negative feedback regulation of vitamin D on PTH gene transcription occurs not by the end-product 1,25OH2D but by its prohormone 25OHD via intracellular activation by 1alpha-hydroxylase within the parathyroid cells.


Molecular and Cellular Endocrinology | 2009

Insulin exhibits short-term anti-inflammatory but long-term proinflammatory effects in vitro.

Yasumasa Iwasaki; Mitsuru Nishiyama; Takafumi Taguchi; Masato Asai; Masanori Yoshida; Machiko Kambayashi; Yoshio Terada; Kozo Hashimoto

Although insulin is indispensable for maintaining glucose homeostasis, it is still controversial whether or not a high concentration of insulin is deleterious. We examined the effect of insulin on the transcriptional activity of NF-kappaB, which mediates the expression of a variety of inflammation/coagulation-related genes using hepatocyte cell lines in vitro. We found that insulin (1 nM) alone caused minimal increase in NF-kappaB-mediated transcription. On the other hand, when cells were simultaneously treated with proinflammatory cytokines such as TNFalpha, the following dual effect of insulin was observed: short-term (6h) suppressive, and long-term (36 h or later) stimulatory effects. The former effect was transient and appears to be mediated by the phosphatidylinositol 3 kinase (PI(3)K) signaling pathway. The latter effect, in contrast, was more pronounced, enhancing the TNFalpha-stimulated NF-kappaB-dependent transcription by more than sevenfold. This positive effect was NF-kappaB-specific, and was eliminated by mitogen-activated protein kinase (MAPK) inhibitors. Altogether, our data suggest that insulin has short-term anti-inflammatory but long-term proinflammatory effects. From a clinical standpoint, this implies that low basal and periodically high plasma insulin is beneficial, whereas a sustained rise in plasma insulin, as often seen in patients with obesity, may induce atherothrombotic disorders, because of the NF-kappaB-mediated overexpression of proinflammatory/procoagulant/antifibrinolytic proteins in the liver.


Molecular and Cellular Endocrinology | 2009

Glucocorticoid receptor plays an indispensable role in mineralocorticoid receptor-dependent transcription in GR-deficient BE(2)C and T84 cells in vitro.

Makoto Tsugita; Yasumasa Iwasaki; Mitsuru Nishiyama; Takafumi Taguchi; Masayuki Shinahara; Yoshinori Taniguchi; Machiko Kambayashi; Akira Nishiyama; Celso E. Gomez-Sanchez; Yoshio Terada; Kozo Hashimoto

The mineralocorticoid receptor (MR) plays an important functional role in the central nervous system; however, the molecular mechanism of MR-dependent gene expression is not entirely clear. In this study, we examined the MR-dependent transcriptional regulation using a human neuronal cell line BE(2)C and an MR/GR-dependent reporter gene (HRE-luciferase) in vitro. Western blot analysis revealed that the cell line expresses MR but not glucocorticoid receptor (GR). In this experimental condition, unexpectedly, the MR-specific ligand aldosterone did not induce HRE-dependent transcription in a native or MR-overexpressed condition, whereas significant transcriptional induction by aldosterone was observed when the GR was co-expressed. The effect of aldosterone was completely inhibited by the MR antagonist spironolactone, indicating an MR-dependent effect. We found similar results in T84 colonic cells expressing neither MR nor GR, such that the aldosterone effect was obtained only when both receptors were co-expressed. The co-operative effect of GR was not obvious with the dimer-deficient mutant GR. Finally, the above findings were reproducible with different promoters containing HRE such as ENaC and MMTV. These results suggest that GR plays an indispensable role in MR-dependent transcription, possibly by forming a MR/GR heterodimer or by acting as a co-activator of MR/MR homodimer.


PLOS ONE | 2015

Small Heat Shock Protein Beta-1 (HSPB1) Is Upregulated and Regulates Autophagy and Apoptosis of Renal Tubular Cells in Acute Kidney Injury

Tatsuki Matsumoto; Madoka Urushido; Haruna Ide; Masayuki Ishihara; Kazu Hamada-Ode; Yoshiko Shimamura; Koji Ogata; Kosuke Inoue; Yoshinori Taniguchi; Takafumi Taguchi; Taro Horino; Shimpei Fujimoto; Yoshio Terada

Background Heat shock protein beta-1 (HSPB1, also known as HSP27) is a small heat shock protein involved in many cellular processes and reportedly protects cells against oxidative stress. Autophagy protects cells from many types of stress and is thought to play a key role in preventing stress in acute kidney injury (AKI). However, little is known about the role of HSPB1 in autophagy and apoptosis in the pathogenesis of AKI. Methods We used a rat ischemia/reperfusion AKI model and cultured renal tubular cells as an in vitro model. To elucidate the regulation of HSPB1, we evaluated the promoter activity and expression of HSPB1 in normal rat kidney (NRK)-52E cells in the presence of H2O2. To examine the regulation of autophagy by HSPB1, we established NRK-light chain 3 (NRK-LC3) cells that were stably transfected with a fusion protein of green fluorescent protein and LC3. Results The results of immunohistological examination showed that HSPB1 was expressed in proximal tubule cells after AKI. Real-time quantitative reverse transcription-polymerase chain reaction and western blot analysis showed that HSPB1 messenger RNA and protein expression were upregulated 6–72 h and 12–72 h, respectively, after ischemia/reperfusion injury. HSPB1 promoter activity as well as messenger RNA and protein expression indicated dose-dependent induction by H2O2. HSPB1 overexpression-induced autophagy in NRK-LC3 cells under normoxic conditions was confirmed with confocal microscopy, which revealed the presence of LC3-positive granules. Furthermore, H2O2-induced autophagy was inhibited by the transfection of small interfering RNAs for HSPB1. Overexpression of HSPB1 reduced BAX activation and H2O2-induced apoptosis, as measured by caspase 3 activity and terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling assay. Conclusions We showed that HSPB1 expression increased during oxidative stress in AKI. Incremental HSPB1 expression increased autophagic flux and inhibited apoptosis in renal tubular cells. These results indicate that HSPB1 upregulation plays a role in the pathophysiology of AKI.


Endocrinology | 2010

Glucocorticoid Receptor-β and Receptor-γ Exert Dominant Negative Effect on Gene Repression But Not on Gene Induction

Yoshinori Taniguchi; Yasumasa Iwasaki; Makoto Tsugita; Mitsuru Nishiyama; Takafumi Taguchi; Mizuho Okazaki; Shuichi Nakayama; Machiko Kambayashi; Kozo Hashimoto; Yoshio Terada

Glucocorticoid has diverse biological effects through induction or repression of its target genes via glucocorticoid receptor (GR). In addition to the wild-type GR (GR-alpha), a variety of GR variants has been reported, and these are thought to modify glucocorticoid action. Among others, GR-beta is reported be responsible for the glucocorticoid resistance frequently observed in steroid-resistant nephrotic syndrome, rheumatoid arthritis, and hematologic tumors, although the precise molecular mechanism remains unclear. In this study, we examined the function of GR-beta and some GR variants (GR-gamma and GR-Delta313-338) using GR-deficient BE(2)C and T84 cells in vitro. We found that GR-beta, when expressed alone, completely lost the capacity of both trans-activation and trans-repression on GR target genes. Interestingly, however, GR-beta showed a dominant-negative effect on GR-alpha only for its trans-repressive effects on cAMP-mediated and cAMP response element-dependent genes. Furthermore, both GR-beta and GR-gamma had dominant-negative effects on GR-alpha selectively for its trans-repressive effects on nuclear factor-kappaB-mediated and inflammation-related genes. These results suggest that 1) the GR-beta variant by itself has no receptor function, but 2) GR-beta and GR-gamma have properties to exert dominant-negative effects on the GR-alpha-mediated trans-repression, which may be responsible for the steroid resistance frequently observed in chronic inflammatory diseases under glucocorticoid therapy.


Life Sciences | 2008

Differential regulation of 11β-hydroxysteroid dehydrogenase type-1 and -2 gene transcription by proinflammatory cytokines in vascular smooth muscle cells

Makoto Tsugita; Yasumasa Iwasaki; Mitsuru Nishiyama; Takafumi Taguchi; Masayuki Shinahara; Yoshinori Taniguchi; Machiko Kambayashi; Yoshio Terada; Kozo Hashimoto

Glucocorticoid hormone is activated by 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD-1) mainly in glucocorticoid-target organs such as the liver and the anterior corticotroph cells, and inactivated by type 2 (11beta-HSD-2) in mineralocorticoid-target cells such as renal and colonic epithelial cells. In this study, we examined the expression and action of these glucocorticoid-metabolizing enzymes in the A10 rat aortic smooth muscle cells (VSMC) in vitro. We found that both 11beta-HSD-1 and -2 mRNAs as well as glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) were expressed in the cells. Interestingly, the transcriptional activity of 11beta-HSD-1 was stimulated by a representative proinflammatory cytokine TNFalpha, and inflammation-related inducible transcription factors AP1 and C/EBPs might have been at least partly responsible for the effect. In contrast, the transcriptional activity of 11beta-HSD-2 was decreased during the same stimuli, and another inflammation-induced transcription factor Egr-1 might have mediated the effect by interfering with the effect of Sp1, which maintains the basal expression of 11beta-HSD-2. The increase and decrease in 11beta-HSD-1 and 11beta-HSD-2 expression during inflammatory stimuli, respectively, were expected to cause the enhancement in glucocorticoid action, which was confirmed by the fact that TNFalpha elicited the cortisone-to-cortisol conversion using our bioassay system which employs the glucocorticoid-responsive reporter gene. Altogether, our results strongly suggest that inflammatory stress facilitates the intracellular glucocorticoid activation, i.e. conversion from inactive cortisone to active cortisol, by modifying the expression of both 11beta-HSD-1 and 11beta-HSD-2.


Journal of Neuroimmunology | 2003

Modulation of type I IL-1 receptor and IL-1β mRNA expression followed by endotoxin treatment in the corticotropin-releasing hormone-deficient mouse

Hossein Pournajafi Nazarloo; Toshihiro Takao; Takafumi Taguchi; Hiroyuki Ito; Kozo Hashimoto

In an attempt to define the possible role of corticotropin-releasing hormone (CRH) on lipopolysaccharide (LPS)-induced type I interleukin-1 receptor (IL-1R1), IL-1alpha, and IL-1beta mRNAs in the pituitary, adrenal gland and spleen, we used CRH-deficient (knockout, KO) mouse in this study. LPS administration resulted in a robust increase in IL-1R1 mRNA levels in the pituitary, adrenal gland and spleen of wild-type (WT) and CRH KO mice, but this elevation was attenuated in the pituitary and adrenal gland of CRH KO mice. CRH deficiency did not affect LPS administration induced increase of IL-1alpha mRNA as well as IL-1beta mRNA in the pituitary and adrenal gland. Lack of CRH attenuated LPS administration induced increase of IL-1beta mRNA expression in the spleen. These data demonstrate the pivotal and organ-specific modulation of CRH for IL-1 and IL-1R1 mRNAs following endotoxin treatment.


Journal of Neuroendocrinology | 2006

Purinergic Receptor Ligands Stimulate Pro-Opiomelanocortin Gene Expression in AtT-20 Pituitary Corticotroph Cells

Li Feng Zhao; Yasumasa Iwasaki; Yutaka Oki; Makoto Tsugita; Takafumi Taguchi; Mitsuru Nishiyama; Toshihiro Takao; Machiko Kambayashi; Kozo Hashimoto

Although recent studies have suggested that purinergic receptors are expressed in the anterior pituitary gland, their involvement in the regulation of pituitary hormone gene expression is not completely understood. In the present study, we examined the expression of purinergic receptors and the effects of purinergic receptor ligands on pro‐opiomelanocortin (POMC) gene expression, in AtT20 mouse corticotroph cells. We identified the expression of most of the purinergic receptor subtypes (A1, A2, P2X1, 3‐7, P2Y1, 2, 4) mRNAs, analysed by the reverse transcriptase‐polymerase chain reaction. We also found that adenosine and ATP, two representative and endogenous agonists of A1‐3 and P2X/P2Y receptors, respectively, stimulated the 5′‐promoter activity of the POMC gene in a dose‐ and time‐related manner. When these ligands were simultaneously used with corticotrophin‐releasing hormone (CRH), effects that were more than additive were observed, suggesting an enhancing role of these compounds in CRH‐mediated adrenocorticotrophic hormone (ACTH) synthesis. These ligands also stimulated the expression of transcription factors involved in the regulation of the POMC gene, but did not enhance ACTH secretion. Finally, the positive effect of adenosine as well as CRH was completely inhibited by the protein kinase A inhibitor H89, whereas that of ATP was not influenced, indicating that different intracellular signalling pathways mediate these effects. Altogether, our results suggest a stimulatory role for these purinergic receptor ligands in the regulation of POMC gene expression in corticotroph cells. Because adenosine and ATP are known to be produced within the pituitary gland, it is possible they may be acting in an autocrine/paracrine fashion.


Life Sciences | 2008

Multisignal regulation of the rat NMDA1 receptor subunit gene : A pivotal role of glucocorticoid-dependent transcription

He Jing; Yasumasa Iwasaki; Mitsuru Nishiyama; Takafumi Taguchi; Makoto Tsugita; Yoshinori Taniguchi; Machiko Kambayashi; Kozo Hashimoto

Although excess of glucocorticoid causes neuronal damage with cognitive disorders, the molecular mechanism for this remains unclear. In this study, we examined the effect of adrenal corticosteroids on the transcription of NMDA glutamate receptor subunit genes and Alzheimer disease-related genes such as amyloid precursor protein (APP), beta-site amyloid precursor protein-cleaving enzyme 1 (BACE1), and presenilin using neuronal cell lines in vitro. We found that synthetic glucocorticoid dexamethasone (dex) potently increased the promoter activity of NMDA1 and 2A subunit genes, but did not stimulate those of Alzheimer disease-related genes. The similar effect of dex was observed on intrinsic NMDA1 mRNA and protein expression. Furthermore, dex showed synergistic and additive effects with protein kinase A- and C-mediated signaling pathways, respectively. Finally, treatment of the Neuro2A cells, which express intrinsic glucocorticoid receptor, with dex significantly enhanced the glutamate-induced neurotoxicity. Our results suggest that glucocorticoid-induced neuronal damage may be, at least partly, attributable to enhanced expression of glutamate NMDA receptor with a resultant increase in the susceptibility of glutamate-induced excitotoxicity rather than to a direct effect of the hormone to the Alzheimer disease-related genes.


Diabetes | 2012

Liver X Receptor α Is Involved in the Transcriptional Regulation of the 6-Phosphofructo-2-Kinase/Fructose-2,6-Bisphosphatase Gene

Li-Feng Zhao; Yasumasa Iwasaki; Mitsuru Nishiyama; Takafumi Taguchi; Makoto Tsugita; Mizuho Okazaki; Shuichi Nakayama; Machiko Kambayashi; Shimpei Fujimoto; Koshi Hashimoto; Koji Murao; Yoshio Terada

The activity of 6-phosphofructo-1-kinase is strictly controlled by fructose-2,6-bisphosphate, the level of which is regulated by another enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK2/FBP2). PFK2/FBP2 is a bifunctional enzyme, having kinase and phosphatase activities, and regulates both glycolysis and gluconeogenesis. Here, we examined the hormonal regulation of the PFK2/FBP2 gene in vitro using the reporter assay, the electromobility shift assay (EMSA), and the chromatin immunoprecipitation (ChIP) assay in HuH7 cells and also using the mouse liver in vivo. We found that the transcriptional activity of the PFK2/FBP2 gene was stimulated by insulin and inhibited by cAMP and glucocorticoid. Liver X receptor (LXR) α showed a potent and specific stimulatory effect on PFK2/FBP2 gene transcription. Deletion and mutagenesis analyses identified the LXR response element (LXRE) in the 5′-promoter region of the PFK2/FBP2 gene. Binding of LXRα was confirmed by the EMSA and ChIP assay. Endogenous PFK2/FBP2 mRNA in the mouse liver was increased in the fasting/refeeding state compared with the fasting state. Altogether, PFK2/FBP2 gene transcription is found to be regulated in a way that is more similar to other glycolytic enzyme genes than to gluconeogenic genes. Furthermore, our data strongly suggest that LXRα is one of the key regulators of PFK2/FBP2 gene transcription.

Collaboration


Dive into the Takafumi Taguchi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge