Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takahiko Sato is active.

Publication


Featured researches published by Takahiko Sato.


PLOS ONE | 2014

Derivation of mesenchymal stromal cells from pluripotent stem cells through a neural crest lineage using small molecule compounds with defined media.

Makoto Fukuta; Yoshinori Nakai; Kosuke Kirino; Masato Nakagawa; Kazuya Sekiguchi; Sanae Nagata; Yoshihisa Matsumoto; Takuya Yamamoto; Katsutsugu Umeda; Toshio Heike; Naoki Okumura; Noriko Koizumi; Takahiko Sato; Tatsutoshi Nakahata; Megumu Saito; Takanobu Otsuka; Shigeru Kinoshita; Morio Ueno; Makoto Ikeya; Junya Toguchida

Neural crest cells (NCCs) are an embryonic migratory cell population with the ability to differentiate into a wide variety of cell types that contribute to the craniofacial skeleton, cornea, peripheral nervous system, and skin pigmentation. This ability suggests the promising role of NCCs as a source for cell-based therapy. Although several methods have been used to induce human NCCs (hNCCs) from human pluripotent stem cells (hPSCs), such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), further modifications are required to improve the robustness, efficacy, and simplicity of these methods. Chemically defined medium (CDM) was used as the basal medium in the induction and maintenance steps. By optimizing the culture conditions, the combination of the GSK3β inhibitor and TGFβ inhibitor with a minimum growth factor (insulin) very efficiently induced hNCCs (70–80%) from hPSCs. The induced hNCCs expressed cranial NCC-related genes and stably proliferated in CDM supplemented with EGF and FGF2 up to at least 10 passages without changes being observed in the major gene expression profiles. Differentiation properties were confirmed for peripheral neurons, glia, melanocytes, and corneal endothelial cells. In addition, cells with differentiation characteristics similar to multipotent mesenchymal stromal cells (MSCs) were induced from hNCCs using CDM specific for human MSCs. Our simple and robust induction protocol using small molecule compounds with defined media enabled the generation of hNCCs as an intermediate material producing terminally differentiated cells for cell-based innovative medicine.


Nature Communications | 2014

miR-195/497 induce postnatal quiescence of skeletal muscle stem cells

Takahiko Sato; Takuya Yamamoto; Atsuko Sehara-Fujisawa

Skeletal muscle stem cells (MuSCs), the major source for skeletal muscle regeneration in vertebrates, are in a state of cell cycle arrest in adult skeletal muscles. Prior evidence suggests that embryonic muscle progenitors proliferate and differentiate to form myofibres and also self-renew, implying that MuSCs, derived from these cells, acquire quiescence later during development. Depletion of Dicer in adult MuSCs promoted their exit from quiescence, suggesting microRNAs are involved in the maintenance of quiescence. Here we identified miR-195 and miR-497 that induce cell cycle arrest by targeting cell cycle genes, Cdc25 and Ccnd. Reduced expression of MyoD in juvenile MuSCs, as a result of overexpressed miR-195/497 or attenuated Cdc25/Ccnd, revealed an intimate link between quiescence and suppression of myogenesis in MuSCs. Transplantation of cultured MuSCs treated with miR-195/497 contributed more efficiently to regenerating muscles of dystrophin-deficient mice, indicating the potential utility of miR-195/497 for stem cell therapies.


Journal of Plant Research | 2001

Immunocytochemical Localization of Enzymes Involved in Lignification of the Cell Wall

Keiji Takabe; Miyuki Takeuchi; Takahiko Sato; Masaki Ito; Minoru Fujita

O-methyltransferase, and cinnnamyl alcohol dehydrogenase were localized to differentiating xylem. These enzymes are particularly abundant during secondary wall formation. Immunolabeling was observed on polysomes and in the cytosol of the cells during secondary wall formation, indicating that these enzymes are synthesized in the polysomes and released in the cytosol. The synthesis of monolignols might occur in the cytosol. Immunolabeling of anionic peroxidase was also localized to the differentiating xylem, particularly during secondary wall formation. The labeling, however, was observed in the rough endoplasmic reticulum (r-ER), the Golgi apparatus, and the plasma membrane, indicating that peroxidase is synthesized in the r-ER, transported to the Golgi apparatus, and localized on the plasma membrane by fusion of the Golgi vesicles to the membrane.


PLOS ONE | 2015

Mest but Not MiR-335 Affects Skeletal Muscle Growth and Regeneration

Yosuke Hiramuki; Takahiko Sato; Yasuhide Furuta; M. Azim Surani; Atsuko Sehara-Fujisawa

When skeletal muscle fibers are injured, they regenerate and grow until their sizes are adjusted to surrounding muscle fibers and other relevant organs. In this study, we examined whether Mest, one of paternally expressed imprinted genes that regulates body size during development, and miR-335 located in the second intron of the Mest gene play roles in muscle regeneration. We generated miR-335-deficient mice, and found that miR-335 is a paternally expressed imprinted microRNA. Although both Mest and miR-335 are highly expressed during muscle development and regeneration, only Mest+/- (maternal/paternal) mice show retardation of body growth. In addition to reduced body weight in Mest+/-; DMD-null mice, decreased muscle growth was observed in Mest+/- mice during cardiotoxin-induced regeneration, suggesting roles of Mest in muscle regeneration. Moreover, expressions of H19 and Igf2r, maternally expressed imprinted genes were affected in tibialis anterior muscle of Mest+/-; DMD-null mice compared to DMD-null mice. Thus, Mest likely mediates muscle regeneration through regulation of imprinted gene networks in skeletal muscle.


Mechanisms of Development | 2015

Roles of ADAM8 in elimination of injured muscle fibers prior to skeletal muscle regeneration

Daigo Nishimura; Hiroshi Sakai; Takahiko Sato; Fuminori Sato; Satoshi Nishimura; Noriko Toyama-Sorimachi; Jörg W. Bartsch; Atsuko Sehara-Fujisawa

Skeletal muscle regeneration requires processes different from developmental myogenesis. One important difference is a requirement of inflammatory reactions prior to regenerative myogenesis, by which injured muscle fibers must be eliminated to make new myotubes. In this study, we show that efficient elimination of injured muscle fibers during regeneration requires ADAM8, a member of a disintegrin and metalloprotease (ADAM) family. Skeletal muscle of dystrophin-null mice, an animal model for Duchenne Muscular Dystrophy, deteriorates by the lack of ADAM8, which is characterized by increased area of muscle degeneration and increased number of necrotic and calcified muscle fibers. Adam8 is highly expressed in neutrophils. Upon cardiotoxin-induced skeletal muscle injury, neutrophils invade into muscle fibers through the basement membrane and form large clusters in wild type, but not in ADAM8-deficient mice, although neutrophils of the latter infiltrate into interstitial tissues similarly to those of wild type mice. Neutrophils lose their adhesiveness to blood vessels after infiltration, which includes an ectodomain shedding of P-Selectin Glycoprotein Ligand-1 (PSGL-1) on their surface. Expression of PSGL-1 on the surface of neutrophils remains higher in ADAM8-deficient than in wild type mice. These results suggest that ADAM8 mediates an enhanced invasiveness of neutrophils into injured muscle fibers by the removal of their adhesiveness to blood vessels after infiltration into interstitial tissues.


PLOS ONE | 2013

Fetal skeletal muscle progenitors have regenerative capacity after intramuscular engraftment in dystrophin deficient mice.

Hiroshi Sakai; Takahiko Sato; Hidetoshi Sakurai; Takuya Yamamoto; Kazunori Hanaoka; Didier Montarras; Atsuko Sehara-Fujisawa

Muscle satellite cells (SCs) are stem cells that reside in skeletal muscles and contribute to regeneration upon muscle injury. SCs arise from skeletal muscle progenitors expressing transcription factors Pax3 and/or Pax7 during embryogenesis in mice. However, it is unclear whether these fetal progenitors possess regenerative ability when transplanted in adult muscle. Here we address this question by investigating whether fetal skeletal muscle progenitors (FMPs) isolated from Pax3GFP/+ embryos have the capacity to regenerate muscle after engraftment into Dystrophin-deficient mice, a model of Duchenne muscular dystrophy. The capacity of FMPs to engraft and enter the myogenic program in regenerating muscle was compared with that of SCs derived from adult Pax3GFP/+ mice. Transplanted FMPs contributed to the reconstitution of damaged myofibers in Dystrophin-deficient mice. However, despite FMPs and SCs having similar myogenic ability in culture, the regenerative ability of FMPs was less than that of SCs in vivo. FMPs that had activated MyoD engrafted more efficiently to regenerate myofibers than MyoD-negative FMPs. Transcriptome and surface marker analyses of these cells suggest the importance of myogenic priming for the efficient myogenic engraftment. Our findings suggest the regenerative capability of FMPs in the context of muscle repair and cell therapy for degenerative muscle disease.


Developmental Neurobiology | 2017

Upregulation of matrix metalloproteinase triggers transdifferentiation of retinal pigmented epithelial cells in Xenopus laevis: A Link between inflammatory response and regeneration: MMP Triggers Retinal Regeneration

Hanako Naitoh; Yukari Suganuma; Yoko Ueda; Takahiko Sato; Yosuke Hiramuki; Atsuko Fujisawa-Sehara; Shigeru Taketani; Masasuke Araki

In adult Xenopus eyes, when the whole retina is removed, retinal pigmented epithelial (RPE) cells become activated to be retinal stem cells and regenerate the whole retina. In the present study, using a tissue culture model, it was examined whether upregulation of matrix metalloproteinases (Mmps) triggers retinal regeneration. Soon after retinal removal, Xmmp9 and Xmmp18 were strongly upregulated in the tissues of the RPE and the choroid. In the culture, Mmp expression in the RPE cells corresponded with their migration from the choroid. A potent MMP inhibitor, 1,10‐PNTL, suppressed RPE cell migration, proliferation, and formation of an epithelial structure in vitro. The mechanism involved in upregulation of Mmps was further investigated. After retinal removal, inflammatory cytokine genes, IL‐1β and TNF‐α, were upregulated both in vivo and in vitro. When the inflammation inhibitors dexamethasone or Withaferin A were applied in vitro, RPE cell migration was severely affected, suppressing transdifferentiation. These results demonstrate that Mmps play a pivotal role in retinal regeneration, and suggest that inflammatory cytokines trigger Mmp upregulation, indicating a direct link between the inflammatory reaction and retinal regeneration.


Scientific Reports | 2017

Activation of TGF-β signaling induces cell death via the unfolded protein response in Fuchs endothelial corneal dystrophy

Naoki Okumura; Keisuke Hashimoto; Miu Kitahara; Hirokazu Okuda; Emi Ueda; Kyoko Watanabe; Makiko Nakahara; Takahiko Sato; Shigeru Kinoshita; Theofilos Tourtas; Ursula Schlötzer-Schrehardt; Friedrich E. Kruse; Noriko Koizumi

Fuchs endothelial corneal dystrophy (FECD) is a slowly progressive bilateral disease of corneal endothelium in which accumulation of extracellular matrix (ECM) and loss of corneal endothelial cells (CECs) are phenotypic features. The corneal endothelium maintains corneal transparency by regulating water hydration; consequently, corneal endothelial dysfunction causes serious vision loss. The only therapy for corneal haziness due to corneal endothelial diseases, including FECD, is corneal transplantation using donor corneas, and no pharmaceutical treatment is available. We provide evidence that the expression levels of transforming growth factor-β (TGF-β) isoforms and TGF-β receptors are high in the corneal endothelium of patients with FECD. A cell model based on patients with FECD shows that TGF-β signaling induced a chronic overload of ECM proteins to the endoplasmic reticulum (ER), thereby enhancing the formation of unfolded protein and triggering the intrinsic apoptotic pathway through the unfolded protein response (UPR). We propose that inhibition of TGF-β signaling may represent a novel therapeutic target that suppresses cell loss as well as the accumulation of ECM in FECD.


PLOS ONE | 2017

SOX10-Nano-Lantern Reporter Human iPS Cells; A Versatile Tool for Neural Crest Research.

Tomoko Horikiri; Hiromi Ohi; Mitsuaki Shibata; Makoto Ikeya; Morio Ueno; Chie Sotozono; Shigeru Kinoshita; Takahiko Sato

The neural crest is a source to produce multipotent neural crest stem cells that have a potential to differentiate into diverse cell types. The transcription factor SOX10 is expressed through early neural crest progenitors and stem cells in vertebrates. Here we report the generation of SOX10-Nano-lantern (NL) reporter human induced pluripotent stem cells (hiPS) by using CRISPR/Cas9 systems, that are beneficial to investigate the generation and maintenance of neural crest progenitor cells. SOX10-NL positive cells are produced transiently from hiPS cells by treatment with TGFβ inhibitor SB431542 and GSK3 inhibitor CHIR99021. We found that all SOX10-NL-positive cells expressed an early neural crest marker NGFR, however SOX10-NL-positive cells purified from differentiated hiPS cells progressively attenuate their NL-expression under proliferation. We therefore attempted to maintain SOX10-NL-positive cells with additional signaling on the plane and sphere culture conditions. These SOX10-NL cells provide us to investigate mass culture with neural crest cells for stem cell research.


PLOS ONE | 2017

Notch ligands regulate the muscle stem-like state ex vivo but are not sufficient for retaining regenerative capacity

Hiroshi Sakai; Sumiaki Fukuda; Miki Nakamura; Akiyoshi Uezumi; Yu-taro Noguchi; Takahiko Sato; Mitsuhiro Morita; Harumoto Yamada; Kunihiro Tsuchida; Shahragim Tajbakhsh; So-ichiro Fukada

Myogenic stem cells are a promising avenue for the treatment of muscular disorders. Freshly isolated muscle stem cells have a remarkable engraftment ability in vivo, but their cell number is limited. Current conventional culture conditions do not allow muscle stem cells to expand in vitro with their bona fide engraftment efficiency, requiring the improvement of culture procedures for achieving successful cell-therapy for muscle disorders. Here we expanded mouse muscle stem cells and human myoblasts with Notch ligands, DLL1, DLL4, and JAG1 to activate Notch signaling in vitro and to investigate whether these cells could retain their engraftment efficiency. Notch signaling promotes the expansion of Pax7+MyoD- mouse muscle stem-like cells and inhibits differentiation even after passage in vitro. Treatment with Notch ligands induced the Notch target genes and generated PAX7+MYOD- stem-like cells from human myoblasts previously cultured on conventional culture plates. However, cells treated with Notch ligands exhibit a stem cell-like state in culture, yet their regenerative ability was less than that of freshly isolated cells in vivo and was comparable to that of the control. These unexpected findings suggest that artificial maintenance of Notch signaling alone is insufficient for improving regenerative capacity of mouse and human donor-muscle cells and suggest that combinatorial events are critical to achieve muscle stem cell and myoblast engraftment potential.

Collaboration


Dive into the Takahiko Sato's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shigeru Kinoshita

Kyoto Prefectural University of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge