Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takahiro Horinouchi is active.

Publication


Featured researches published by Takahiro Horinouchi.


FEBS Letters | 2007

Distinct roles of TIR and non-TIR regions in the subcellular localization and signaling properties of MyD88.

Tadashi Nishiya; Emi Kajita; Takahiro Horinouchi; Arata Nishimoto; Soichi Miwa

MyD88 is a cytoplasmic adaptor protein that is critical for Toll‐like receptor (TLR) signaling. The subcellular localization of MyD88 is characterized as large condensed forms in the cytoplasm. The mechanism and significance of this localization with respect to the signaling function, however, are currently unknown. Here, we demonstrate that MyD88 localization depends on the entire non‐TIR region and that the correct cellular targeting of MyD88 is indispensable for its signaling function. The Toll‐interleukin I receptor‐resistance (TIR) domain does not determine the subcellular localization, but it mediates interaction with specific TLRs. These findings reveal distinct roles for the TIR and non‐TIR regions in the subcellular localization and signaling properties of MyD88.


Biochemical and Biophysical Research Communications | 2012

Different binding property of STIM1 and its novel splice variant STIM1L to Orai1, TRPC3, and TRPC6 channels

Takahiro Horinouchi; Tsunehito Higashi; Tsunaki Higa; Koji Terada; Yosuke Mai; Hiroyuki Aoyagi; Chizuru Hatate; Prabha Nepal; Mika Horiguchi; Takuya Harada; Soichi Miwa

Stromal interaction molecule 1 (STIM1) is the endoplasmic reticulum (ER) Ca(2+) sensor to control ER Ca(2+) levels. A recent study has shown that STIM1L, a new splice variant of STIM1, is expressed in various tissues of rodent and in human skeletal muscle, and that the interaction of STIM1L with actin filament allows rapid activation of store-operated Ca(2+) entry (SOCE) mediated through Orai1 channels. Here, we characterize mRNA expression and function of human STIM1 and STIM1L, and compare their binding property to Orai1 functioning as store-operated Ca(2+) channels (SOCCs), and TRPC3 (transient receptor potential canonical 3) and TRPC6 channels functioning as endothelin type A receptor (ET(A)R)-operated Ca(2+) channels (ROCCs). Although mRNA for STIM1 was ubiquitously expressed in human tissues, STIM1L was detected only in skeletal muscle. STIM1L augmented thapsigargin- and endothelin-1-induced SOCE more strongly than STIM1 in human embryonic kidney 293 cells stably expressing ET(A)R, whereas, it tends to suppress ET(A)R-operated Ca(2+) entry (ROCE) via TRPC3 and TRPC6 more strongly than STIM1. Coimmunoprecipitation experiments have revealed that when compared with STIM1, STIM1L binds more abundantly to Orai1 and also to TRPC3 and TRPC6. These results suggest that the higher binding capacity of STIM1L to SOCCs and ROCCs plays an important role in the regulation of Ca(2+) signaling such as the augmentation of SOCE via Orai1 and the inhibition of ROCE via TRPC3 and TRPC6.


Toxicology | 2013

Identification of stable cytotoxic factors in the gas phase extract of cigarette smoke and pharmacological characterization of their cytotoxicity.

Yoichi Noya; Koh-ichi Seki; Hiroshi Asano; Yosuke Mai; Takahiro Horinouchi; Tsunehito Higashi; Koji Terada; Chizuru Hatate; Akimasa Hoshi; Prabha Nepal; Mika Horiguchi; Yuji Kuge; Soichi Miwa

Smoking is a major risk factor for atherosclerotic vascular diseases, but the mechanism for its genesis is unknown. We have recently shown that the gas phase of cigarette smoke (nicotine- and tar-free cigarette smoke extract; CSE) likely to reach the systemic circulation contains stable substances which cause cytotoxicity like plasma membrane damage and cell death in cultured cells, and also that the plasma membrane damage is caused through sequential activation of protein kinase C (PKC) and NADPH oxidase (NOX) and the resulting generation of reactive oxygen species (PKC/NOX-dependent mechanism), whereas cell death is caused through PKC/NOX-dependent and -independent mechanisms. To identify these stable substances, the CSE was prepared by passing the main-stream smoke of 10 cigarettes through a Cambridge glass fiber filter, trapping of the smoke in a vessel cooled at -80°C, and subsequent dissolution in 10ml of water. The CSE was fractionated into nine fractions using reversed-phase HPLC, and each fraction was screened for cytotoxicity in cultured cells, using propidium iodide uptake assay for cell membrane damage and MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] reduction assay for cell viability. The cytotoxicity was positive in two of the nine fractions (Fr2 and Fr5). After extraction of the active fractions into dichloromethane, GC/MS analysis identified 2-cyclopenten-1-one (CPO) in Fr5 but none in Fr2. After derivatization of the active fractions with O-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine hydrochloride, GC/MS analysis identified acrolein, acetone and propionaldehyde in Fr2, and methyl vinyl ketone (MVK) in Fr5. After 4-h incubation, authentic acrolein and MVK induced concentration-dependent cytotoxicity with EC50 values of 75.9±8.2 and 47.0±8.0μM (mean±SEM; n=3), respectively, whereas acetone, propionaldehyde and CPO were without effect. However, after 24-h incubation, CPO induced concentration-dependent cytotoxicity with an EC50 value of 264.0±16.9μM (n=3). The concentrations of acrolein, MVK and CPO in the CSE were 3368±334, 2429±123 and 392.9±31.8μM (n=4), respectively, which were higher than the cytotoxic concentrations. The cytotoxicity of acrolein and MVK consisted of plasma membrane damage and decreased cell viability: the plasma membrane damage was totally prevented by treatment with an inhibitor of PKC or NOX, whereas the decreased cell viability was only partially prevented by these inhibitors. The cytotoxicity of CPO consisted only of decreased cell viability, which was totally resistant to these inhibitors. These results show that acrolein and MVK are responsible for the acute cytotoxicity of the CSE through PKC/NOX-dependent and -independent mechanisms, whereas CPO is responsible for the delayed cytotoxicity of the CSE through a PKC/NOX-independent mechanism.


Journal of Pharmacology and Experimental Therapeutics | 2012

Adenylate cyclase/cAMP/protein kinase A signaling pathway inhibits endothelin type A receptor-operated Ca²⁺ entry mediated via transient receptor potential canonical 6 channels.

Takahiro Horinouchi; Tsunaki Higa; Hiroyuki Aoyagi; Tadashi Nishiya; Koji Terada; Soichi Miwa

Receptor-operated Ca2+ entry (ROCE) via transient receptor potential canonical channel 6 (TRPC6) is important machinery for an increase in intracellular Ca2+ concentration triggered by the activation of Gq protein-coupled receptors. TRPC6 is phosphorylated by various protein kinases including protein kinase A (PKA). However, the regulation of TRPC6 activity by PKA is still controversial. The purpose of this study was to elucidate the role of adenylate cyclase/cAMP/PKA signaling pathway in the regulation of Gq protein-coupled endothelin type A receptor (ETAR)-mediated ROCE via TRPC6. For this purpose, human embryonic kidney 293 (HEK293) cells stably coexpressing human ETAR and TRPC6 (wild type) or its mutants possessing a single point mutation of putative phosphorylation sites for PKA were used to analyze ROCE and amino acids responsible for PKA-mediated phosphorylation of TRPC6. Ca2+ measurements with thapsigargin-induced Ca2+-depletion/Ca2+-restoration protocol to estimate ROCE showed that the stimulation of ETAR induced marked ROCE in HEK293 cells expressing TRPC6 compared with control cells. The ROCE was inhibited by forskolin and papaverine to activate the cAMP/PKA pathway, whereas it was potentiated by Rp-8-bromoadenosine-cAMP sodium salt, a PKA inhibitor. The inhibitory effects of forskolin and papaverine were partially cancelled by replacing Ser28 (TRPC6S28A) but not Thr69 (TRPC6T69A) of TRPC6 with alanine. In vitro kinase assay with Phos-tag biotin to determine the phosphorylation level of TRPC6 revealed that wild-type and mutant (TRPC6S28A and TRPC6T69A) TRPC6 proteins were phosphorylated by PKA, but the phosphorylation level of these mutants was lower (approximately 50%) than that of wild type. These results suggest that TRPC6 is negatively regulated by the PKA-mediated phosphorylation of Ser28 but not Thr69.


Biological & Pharmaceutical Bulletin | 2016

Carbonyl Compounds in the Gas Phase of Cigarette Mainstream Smoke and Their Pharmacological Properties

Takahiro Horinouchi; Tsunehito Higashi; Yuichi Mazaki; Soichi Miwa

Cigarette mainstream smoke is composed of gas and tar phases and contains >4000 chemical constituents, including nicotine and tar. The substances in the gas phase but not in the tar phase can pass through the airway epithelial barrier, enter the systemic circulation via the pulmonary circulation, and increase systemic oxidative damage, leading to the development of cigarette smoking-related diseases such as atherosclerosis. Recently, we identified some stable carbonyl compounds, including acrolein (ACR) and methyl vinyl ketone (MVK), as major cytotoxic factors in nicotine- and tar-free cigarette smoke extract (CSE) of the gas phase. CSE, ACR, and MVK induce protein kinase C (PKC)-dependent activation of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) and subsequent generation of reactive oxygen species (ROS) via NOX, causing plasma membrane damage and cell apoptosis. CSE, ACR, and MVK also trigger carbonylation of PKC, which is an irreversible oxidative modification. Cell damage and PKC carbonylation in response to treatment with CSE, ACR, or MVK are abolished by thiol-containing antioxidants such as N-acetyl-L-cysteine and reduced glutathione. Thus pharmacological modulation of PKC and NOX activities and the trapping of ROS are potential strategies for the prevention of diseases related to cigarette smoking.


PLOS ONE | 2014

A Simple and Rapid Method for Standard Preparation of Gas Phase Extract of Cigarette Smoke

Tsunehito Higashi; Yosuke Mai; Yoichi Noya; Takahiro Horinouchi; Koji Terada; Akimasa Hoshi; Prabha Nepal; Takuya Harada; Mika Horiguchi; Chizuru Hatate; Yuji Kuge; Soichi Miwa

Cigarette smoke consists of tar and gas phase: the latter is toxicologically important because it can pass through lung alveolar epithelium to enter the circulation. Here we attempt to establish a standard method for preparation of gas phase extract of cigarette smoke (CSE). CSE was prepared by continuously sucking cigarette smoke through a Cambridge filter to remove tar, followed by bubbling it into phosphate-buffered saline (PBS). An increase in dry weight of the filter was defined as tar weight. Characteristically, concentrations of CSEs were represented as virtual tar concentrations, assuming that tar on the filter was dissolved in PBS. CSEs prepared from smaller numbers of cigarettes (original tar concentrations ≤15 mg/ml) showed similar concentration-response curves for cytotoxicity versus virtual tar concentrations, but with CSEs from larger numbers (tar ≥20 mg/ml), the curves were shifted rightward. Accordingly, the cytotoxic activity was detected in PBS of the second reservoir downstream of the first one with larger numbers of cigarettes. CSEs prepared from various cigarette brands showed comparable concentration-response curves for cytotoxicity. Two types of CSEs prepared by continuous and puff smoking protocols were similar regarding concentration-response curves for cytotoxicity, pharmacology of their cytotoxicity, and concentrations of cytotoxic compounds. These data show that concentrations of CSEs expressed by virtual tar concentrations can be a reference value to normalize their cytotoxicity, irrespective of numbers of combusted cigarettes, cigarette brands and smoking protocols, if original tar concentrations are ≤15 mg/ml.


General Pharmacology-the Vascular System | 1995

Effect of bupranolol on CGP 12177-induced relaxation and cAMP accumulation in the guinea pig taenia caecum.

Katsuo Koike; Takahiro Horinouchi; Issei Takayanagi

1. The effect of bupranolol on CGP 12177-induced relaxation and cAMP accumulation in the guinea pig taenia caecum was examined. 2. The relaxant response to CGP 12177 was unaffected by propranolol (approximately 10(-6) M), whereas that to CGP 12177 was antagonized in a concentration-dependent manner by bupranolol; Schild plot of the data revealed the pA2 value of 5.61. 3. CGP 12177 significantly increased cyclic AMP level in this preparation. Bupranolol (10(-4) M) significantly decreased the cyclic AMP level that was elicited by CGP 12177, whereas propranolol (10(-5) M) produced no effect. 4. These results suggest that bupranolol appears to be an efficient beta3-antagonist in the guinea pig taenia caecum and confirm that the response to CGP 12177 is mediated by beta3-adrenoceptors.


Life Sciences | 2014

Endothelin-1 activates extracellular signal-regulated kinases 1/2 via transactivation of platelet-derived growth factor receptor in rat L6 myoblasts

Takuya Harada; Takahiro Horinouchi; Tsunaki Higa; Akimasa Hoshi; Tsunehito Higashi; Koji Terada; Yosuke Mai; Prabha Nepal; Mika Horiguchi; Chizuru Hatate; Soichi Miwa

AIMS Endothelin (ET) system plays a critical role in the development of insulin resistance and type 2 diabetes. In skeletal muscle, differentiation of myoblasts to myotubes is accompanied by the development of insulin sensitivity. Activation of extracellular signal-regulated kinase (ERK) 1/2 inhibits the differentiation of myoblasts, leading to insulin resistance. Although ET receptor (ETR) stimulation generally activates ERK1/2, the mechanism for ETR-mediated ERK1/2 activation in skeletal muscle is unknown. The purpose of this study was to determine the signal transduction pathway involved in ET-1-stimulated ERK1/2 phosphorylation in L6 myoblasts derived from rat skeletal muscle. MAIN METHODS Changes in phosphorylation levels of ERK1/2 following stimulation with ET-1 were analyzed by Western blot in L6 myoblasts. To inhibit receptor internalization, dominant-negative dynamin (K44A) was overexpressed in L6 myoblasts using adenovirus-mediated gene transfer. KEY FINDINGS ET-1 induced phosphorylation of ERK1/2 in L6 myoblasts. The ERK1/2 phosphorylation was abolished by BQ123 (a selective ET type A receptor (ETAR) antagonist), YM-254890 (a Gαq/11 protein inhibitor), and AG370 (a platelet-derived growth factor receptor (PDGFR) kinase inhibitor), while U-73122 (a phospholipase C (PLC) inhibitor) was less potent. The ERK1/2 phosphorylation was inhibited by overexpression of dominant-negative dynamin (K44A). These results suggest that ETAR stimulation induces ERK1/2 phosphorylation in L6 myoblasts through Gq/11 protein-dependent, PLC-independent PDGFR transactivation which requires dynamin-dependent ETAR internalization. SIGNIFICANCE Because activation of ERK1/2 is considered to inhibit differentiation of myoblasts with the development of insulin sensitivity, the ETAR-mediated PDGFR transactivation and subsequent ERK1/2 activation play an important role in ET-1-induced insulin resistance.


Journal of Biological Chemistry | 2014

Agonist-promoted ubiquitination differentially regulates receptor trafficking of endothelin type A and type B receptors.

Koji Terada; Takahiro Horinouchi; Yoichiro Fujioka; Tsunehito Higashi; Prabha Nepal; Mika Horiguchi; Chizuru Hatate; Akimasa Hoshi; Takuya Harada; Yosuke Mai; Yusuke Ohba; Soichi Miwa

Background: Agonist stimulation induces different intracellular trafficking of endothelin receptors (ETA/BR) after internalization. The mechanism is unclear. Results: Stimulation induces ubiquitination, lysosomal targeting, and decreased cell surface ETBR levels. Non-ubiquitinated ETAR and ETBR mutant recycled to plasma membrane with smaller changes in the levels. Conclusion: Ubiquitination determines intracellular trafficking of endothelin receptors. Significance: ETBR ubiquitination fine tunes cellular responses to agonist by regulating cellular receptor levels. Two types of G protein-coupled receptors for endothelin-1 (ET-1), ET type A receptor (ETAR) and ETBR, closely resemble each other, but upon ET-1 stimulation, they follow totally different intracellular trafficking pathways; ETAR is recycled back to plasma membrane, whereas ETBR is targeted to lysosome for degradation. However, the mechanisms for such different fates are unknown. Here we demonstrated that ETBR but not ETAR was ubiquitinated on the cell surface following ET-1 stimulation and that ETBR was internalized and degraded in lysosome more rapidly than ETAR. The mutant ETBR (designated “5KR mutant”) in which 5 lysine residues in the C-tail were substituted to arginine was not ubiquitinated, and its rates of internalization and degradation after ET-1 stimulation became slower, being comparable with those of ETAR. Confocal microscopic study showed that following ET-1 stimulation, ETAR and 5KR mutant of ETBR were co-localized mainly with Rab11, a marker of recycling endosome, whereas ETBR was co-localized with Rab7, a marker of late endosome/lysosome. In the 5KR mutant, ET-1-induced ERK phosphorylation and an increase in the intracellular Ca2+ concentration upon repetitive ET-1 stimulation were larger. A series of ETBR mutants (designated “4KR mutant”), in which either one of 5 arginine residues of the 5KR mutant was reverted to lysine, were normally ubiquitinated, internalized, and degraded, with ERK phosphorylation being normalized. These results demonstrate that agonist-induced ubiquitination at either lysine residue in the C-tail of ETBR but not ETAR switches intracellular trafficking from recycling to plasma membrane to targeting to lysosome, causing decreases in the cell surface level of ETBR and intracellular signaling.


British Journal of Pharmacology | 2016

Endothelin‐1 suppresses insulin‐stimulated Akt phosphorylation and glucose uptake via GPCR kinase 2 in skeletal muscle cells

Takahiro Horinouchi; Akimasa Hoshi; Takuya Harada; Tsunaki Higa; Koji Terada; Tsunehito Higashi; Yosuke Mai; Prabha Nepal; Yuichi Mazaki; Soichi Miwa

Endothelin‐1 (ET‐1) reduces insulin‐stimulated glucose uptake in skeletal muscle, inducing insulin resistance. Here, we have determined the molecular mechanisms underlying negative regulation by ET‐1 of insulin signalling.

Collaboration


Dive into the Takahiro Horinouchi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge