Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takahiro Morio is active.

Publication


Featured researches published by Takahiro Morio.


Nature | 2005

The genome of the social amoeba Dictyostelium discoideum

Ludwig Eichinger; J. A. Pachebat; G. Glöckner; Marie-Adele Rajandream; Richard Sucgang; Matthew Berriman; J. Song; Rolf Olsen; Karol Szafranski; Qikai Xu; Budi Tunggal; Sarah K. Kummerfeld; B. A. Konfortov; Francisco Rivero; Alan Thomas Bankier; R. Lehmann; N. Hamlin; Robert Davies; Pascale Gaudet; Petra Fey; Karen E Pilcher; Guokai Chen; David L. Saunders; Erica Sodergren; Paul Davis; Arnaud Kerhornou; X. Nie; Neil Hall; Christophe Anjard; Lisa Hemphill

The social amoebae are exceptional in their ability to alternate between unicellular and multicellular forms. Here we describe the genome of the best-studied member of this group, Dictyostelium discoideum. The gene-dense chromosomes of this organism encode approximately 12,500 predicted proteins, a high proportion of which have long, repetitive amino acid tracts. There are many genes for polyketide synthases and ABC transporters, suggesting an extensive secondary metabolism for producing and exporting small molecules. The genome is rich in complex repeats, one class of which is clustered and may serve as centromeres. Partial copies of the extrachromosomal ribosomal DNA (rDNA) element are found at the ends of each chromosome, suggesting a novel telomere structure and the use of a common mechanism to maintain both the rDNA and chromosomal termini. A proteome-based phylogeny shows that the amoebozoa diverged from the animal–fungal lineage after the plant–animal split, but Dictyostelium seems to have retained more of the diversity of the ancestral genome than have plants, animals or fungi.


Cellular Microbiology | 2006

Dictyostelium transcriptional host cell response upon infection with Legionella.

Patrick Farbrother; Carina Wagner; Jianbo Na; Budi Tunggal; Takahiro Morio; Hideko Urushihara; Yoshimasa Tanaka; Michael Schleicher; Michael Steinert; Ludwig Eichinger

Differential gene expression of Dictyostelium discoideum after infection with Legionella pneumophila was investigated using DNA microarrays. Investigation of a 48 h time course of infection revealed several clusters of co‐regulated genes, an enrichment of preferentially up‐ or downregulated genes in distinct functional categories and also showed that most of the transcriptional changes occurred 24 h after infection. A detailed analysis of the 24 h time point post infection was performed in comparison to three controls, uninfected cells and co‐incubation with Legionella hackeliae and L. pneumophilaΔdotA. One hundred and thirty‐one differentially expressed D. discoideum genes were identified as common to all three experiments and are thought to be involved in the pathogenic response. Functional annotation of the differentially regulated genes revealed that apart from triggering a stress response Legionella apparently not only interferes with intracellular vesicle fusion and destination but also profoundly influences and exploits the metabolism of its host. For some of the identified genes, e.g. rtoA involvement in the host response has been demonstrated in a recent study, for others such a role appears plausible. The results provide the basis for a better understanding of the complex host‐pathogen interactions and for further studies on the Dictyostelium response to Legionella infection.


Eukaryotic Cell | 2003

Changing Patterns of Gene Expression in Dictyostelium Prestalk Cell Subtypes Recognized by In Situ Hybridization with Genes from Microarray Analyses

Mineko Maeda; Haruyo Sakamoto; Negin Iranfar; Danny Fuller; Toshinari Maruo; Satoshi Ogihara; Takahiro Morio; Hideko Urushihara; Yoshimasa Tanaka; William F. Loomis

ABSTRACT We used microarrays carrying most of the genes that are developmentally regulated in Dictyostelium to discover those that are preferentially expressed in prestalk cells. Prestalk cells are localized at the front of slugs and play crucial roles in morphogenesis and slug migration. Using whole-mount in situ hybridization, we were able to verify 104 prestalk genes. Three of these were found to be expressed only in cells at the very front of slugs, the PstA cell type. Another 10 genes were found to be expressed in the small number of cells that form a central core at the anterior, the PstAB cell type. The rest of the prestalk-specific genes are expressed in PstO cells, which are found immediately posterior to PstA cells but anterior to 80% of the slug that consists of prespore cells. Half of these are also expressed in PstA cells. At later stages of development, the patterns of expression of a considerable number of these prestalk genes changes significantly, allowing us to further subdivide them. Some are expressed at much higher levels during culmination, while others are repressed. These results demonstrate the extremely dynamic nature of cell-type-specific expression in Dictyostelium and further define the changing physiology of the cell types. One of the signals that affect gene expression in PstO cells is the hexaphenone DIF-1. We found that expression of about half of the PstO-specific genes were affected in a mutant that is unable to synthesize DIF-1, while the rest appeared to be DIF independent. These results indicate that differentiation of some aspects of PstO cells can occur in the absence of DIF-1.


Molecular Genetics and Genomics | 2000

The mitochondrial DNA of Dictyostelium discoideum: Complete sequence, gene content and genome organization

Shinji Ogawa; R. Yoshino; Kiyohiko Angata; M. Iwamoto; Min Pi; K. Kuroe; K. Matsuo; Takahiro Morio; Hideko Urushihara; Kaichiro Yanagisawa; Yoshimasa Tanaka

Abstract We present an overview of the gene content and organization of the mitochondrial genome of Dictyostelium discoideum. The mitochondria genome consists of 55,564 bp with an A + T content of 72.6%. The identified genes include those for two ribosomal RNAs (rnl and rns), 18 tRNAs, ten subunits of the NADH dehydrogenase complex (nad1, 2, 3, 4, 4L, 5, 6, 7, 9 and 11), apocytochrome b (cytb), three subunits of the cytochrome oxidase (cox1/2 and 3), four subunits of the ATP synthase complex (atp1, 6, 8 and 9), 15 ribosomal proteins, and five other ORFs, excluding intronic ORFs. Notable features of D. discoideum mtDNA include the following. (1) All genes are encoded on the same strand of the DNA and a universal genetic code is used. (2) The cox1 gene has no termination codon and is fused to the downstream cox2 gene. The 13 genes for ribosomal proteins and four ORF genes form a cluster 15.4 kb long with several gene overlaps. (3) The number of tRNAs encoded in the genome is not sufficient to support the synthesis of mitochondrial protein. (4) In total, five group I introns reside in rnl and cox1/2, and three of those in cox1/2 contain four free-standing ORFs. We compare the genome to other sequenced mitochondrial genomes, particularly that of Acanthamoeba castellanii.


Biochemical Journal | 2002

Syntaxin 7, syntaxin 8, Vti1 and VAMP7 (vesicle-associated membrane protein 7) form an active SNARE complex for early macropinocytic compartment fusion in Dictyostelium discoideum.

Aleksandra Bogdanovic; Nelly Bennett; Sylvie Kieffer; Mathilde Louwagie; Takahiro Morio; Jérôme Garin; Michel Satre; Franz Bruckert

The macropinocytic pathway in Dictyostelium discoideum is organized linearly. After actin-driven internalization, fluid material passes sequentially from endosomes to lysosomes, where molecules are degraded and absorbed. Residual material is exocytosed via post-lysosomal compartments. Syntaxin 7 is a SNARE (soluble N -ethylmaleimide-sensitive fusion protein attachment protein receptor) protein that is present and active in D. discoideum endosomes [Bogdanovic, Bruckert, Morio and Satre (2000) J. Biol. Chem. 275, 36691-36697]. Here we report the identification of its main SNARE partners by co-immunoprecipitation and MS peptide sequencing. The syntaxin 7 complex contains two co-t-SNAREs [Vti1 (Vps10p tail interactor 1) and syntaxin 8] and a v-SNARE [VAMP7 (vesicle-associated membrane protein 7)] (where t-SNAREs are SNAREs of the target compartment and v-SNAREs are SNAREs present in donor vesicles). In endosomes and in vitro, syntaxin 7, Vti1 and syntaxin 8 form a complex that is able to bind VAMP7. Antibodies to syntaxin 8 and a soluble recombinant VAMP7 fragment both inhibit in vitro reconstituted D. discoideum endosome fusion. The lysosomal content of syntaxin 7, Vti1, syntaxin 8 and VAMP7 is low compared with that in endosomes, implying a highly active recycling or retention mechanism. A likely model is that VAMP7 is a v-SNARE present on vesicles carrying lysosomal enzymes, and that the syntaxin 7-Vti1-syntaxin 8 t-SNARE complex is associated with incoming endocytic material.


Journal of Cell Science | 2003

A STAT-regulated, stress-induced signalling pathway in Dictyostelium

Tsuyoshi Araki; Masatsune Tsujioka; Tomoaki Abe; Masashi Fukuzawa; Marcel Meima; Pauline Schaap; Takahiro Morio; Hideko Urushihara; Mariko Katoh; Mineko Maeda; Yoshimasa Tanaka; Ikuo Takeuchi; Jeffrey G. Williams

The Dictyostelium stalk cell inducer differentiation-inducing factor (DIF) directs tyrosine phosphorylation and nuclear accumulation of the STAT (signal transducer and activator of transcription) protein Dd-STATc. We show that hyperosmotic stress, heat shock and oxidative stress also activate Dd-STATc. Hyperosmotic stress is known to elevate intracellular cGMP and cAMP levels, and the membrane-permeant analogue 8-bromo-cGMP rapidly activates Dd-STATc, whereas 8-bromo-cAMP is a much less effective inducer. Surprisingly, however, Dd-STATc remains stress activatable in null mutants for components of the known cGMP-mediated and cAMP-mediated stress-response pathways and in a double mutant affecting both pathways. Also, Dd-STATc null cells are not abnormally sensitive to hyperosmotic stress. Microarray analysis identified two genes, gapA and rtoA, that are induced by hyperosmotic stress. Osmotic stress induction of gapA and rtoA is entirely dependent on Dd-STATc. Neither gene is inducible by DIF but both are rapidly inducible with 8-bromo-cGMP. Again, 8-bromo-cAMP is a much less potent inducer than 8-bromo-cGMP. These data show that Dd-STATc functions as a transcriptional activator in a stress-response pathway and the pharmacological evidence, at least, is consistent with cGMP acting as a second messenger.


Experimental Dermatology | 2007

Antimelanogenesis effect of Tunisian herb Thymelaea hirsuta extract on B16 murine melanoma cells

Mitsuko Kawano; Kyoko Matsuyama; Yusaku Miyamae; Hiroshi Shinmoto; Takahiro Morio; Hideyuki Shigemori; Hiroko Isoda

Abstract:  Skin pigmentation is the result of melanogenesis that occurs in melanocytes and/or melanoma cells. Although melanogenesis is necessary for the prevention of DNA damage and cancer caused by UV irradiation, excessive accumulation of melanin can also cause melanoma. Thus, we focused on the antimelanogenesis effect of an extract from Thymelaea hirsuta, a Tunisian herb. Murine melanoma B16 cells were treated with T. hirsuta extract, and then cell viability and synthesized melanin content were measured. We found that the T. hirsuta extract decreased the synthesized melanin content in B16 cells without cytotoxicity. Tyrosinase is a key enzyme of melanogenesis and extracellular signal‐regulated kinase (ERK)‐1/2 phosphorylation is known to be related to melanogenesis inhibition. To clarify its mechanism, we also determined ERK1/2 phosphorylation and tyrosinase expression level. ERK1/2 was immediately phosphorylated in cells just after treatment with the extract. The tyrosinase expression was inhibited after 24 h of stimulation with the extract. The T. hirsuta extract was fractionated, and we found that one fraction considerably decreased the melanin synthesis in B16 cells and that this fraction contains daphnanes as the main component. This indicates that our findings might be attributable to daphnanes.


Eukaryotic Cell | 2004

Control of Cell Type Proportioning in Dictyostelium discoideum by Differentiation-Inducing Factor as Determined by In Situ Hybridization

Toshinari Maruo; Haruyo Sakamoto; Negin Iranfar; Danny Fuller; Takahiro Morio; Hideko Urushihara; Yoshimasa Tanaka; Mineko Maeda; William F. Loomis

ABSTRACT We have determined the proportions of the prespore and prestalk regions in Dictyostelium discoideum slugs by in situ hybridization with a large number of prespore- and prestalk-specific genes. Microarrays were used to discover genes expressed in a cell type-specific manner. Fifty-four prespore-specific genes were verified by in situ hybridization, including 18 that had been previously shown to be cell type specific. The 36 new genes more than doubles the number of available prespore markers. At the slug stage, the prespore genes hybridized to cells uniformly in the posterior 80% of wild-type slugs but hybridized to the posterior 90% of slugs lacking the secreted alkylphenone differentiation-inducing factor 1 (DIF-1). There was a compensatory twofold decrease in prestalk cells in DIF-less slugs. Removal of prespore cells resulted in cell type conversion in both wild-type and DIF-less anterior fragments. Thus, DIF-1 appears to act in concert with other processes to establish cell type proportions.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Activated cAMP receptors switch encystation into sporulation.

Yoshinori Kawabe; Takahiro Morio; John James; Alan R. Prescott; Yoshimasa Tanaka; Pauline Schaap

Metazoan embryogenesis is controlled by a limited number of signaling modules that are used repetitively at successive developmental stages. The development of social amoebas shows similar reiterated use of cAMP-mediated signaling. In the model Dictyostelium discoideum, secreted cAMP acting on 4 cAMP receptors (cARs1-4) coordinates cell movement during aggregation and fruiting body formation, and induces the expression of aggregation and sporulation genes at consecutive developmental stages. To identify hierarchy in the multiple roles of cAMP, we investigated cAR heterogeneity and function across the social amoeba phylogeny. The gene duplications that yielded cARs 2-4 occurred late in evolution. Many species have only a cAR1 ortholog that duplicated independently in the Polysphondylids and Acytostelids. Disruption of both cAR genes of Polysphondylium pallidum (Ppal) did not affect aggregation, but caused complete collapse of fruiting body morphogenesis. The stunted structures contained disorganized stalk cells, which supported a mass of cysts instead of spores; cAMP triggered spore gene expression in Ppal, but not in the cAR null mutant, explaining its sporulation defect. Encystation is the survival strategy of solitary amoebas, and lower taxa, like Ppal, can still encyst as single cells. Recent findings showed that intracellular cAMP accumulation suffices to trigger encystation, whereas it is a complementary requirement for sporulation. Combined, the data suggest that cAMP signaling in social amoebas evolved from cAMP-mediated encystation in solitary amoebas; cAMP secretion in aggregates prompted the starving cells to form spores and not cysts, and additionally organized fruiting body morphogenesis. cAMP-mediated aggregation was the most recent innovation.


Methods of Molecular Biology | 2006

The cDNA sequencing project.

Hideko Urushihara; Takahiro Morio; Yoshimasa Tanaka

The Dictyostelium discoideum cDNA sequencing project started in 1995, preceding the genome sequencing project. Altogether, 14 cDNA libraries, including full-length ones, were constructed from five different stages of growth and asexual and sexual development, from which nearly 100,000 randomly chosen clones were sequenced to yield over 150,000 expressed sequence tags (ESTs). The data have been publicized online to facilitate clone distribution and collaboration using the whole clone set for microarray analyses. The EST reads were assembled to 6700 independent genes, which constitute about 55% of the total estimated Dictyostelium genes. Utilization of wet and dry resources have contributed to the understanding of the genetic system controlling the multicellular development in Dictyostelium.

Collaboration


Dive into the Takahiro Morio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Min Pi

University of Tsukuba

View shared research outputs
Researchain Logo
Decentralizing Knowledge