Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takahiro Tagami is active.

Publication


Featured researches published by Takahiro Tagami.


Molecular Reproduction and Development | 1997

The developmental origin of primordial germ cells and the transmission of the donor-derived gametes in mixed-sex germline chimeras to the offspring in the chicken

Hiroshi Kagami; Takahiro Tagami; Yuko Matsubara; Takashi Harumi; Hirofumi Hanada; Kimiaki Maruyama; Michiharu Sakurai; Takashi Kuwana; Mitsuru Naito

A novel system has been developed to determine the origin and development of primordial germ cells (PGCs) in avian embryos directly. Approximately 700 cells were removed from the center of the area pellucida, the outer of the area pellucida, and the area opaca of the stage X blastoderm (Eyal‐Giladi and Kochav, 1976; Dev Biol 49:321–337). When the cells were removed from the center of the area pellucida, the mean number of circulating PGCs per 1 μl of blood was significantly decreased to 13 (P < 0.05) in the embryo at stage 15 (Hamburger and Hamilton, 1951: J Morphol 88:49–92) as compared to intact embryos of 51. When the removed recipient cells from the center of the area pellucida were replenished with 500 donor cells, no reduction in the PGC number was observed. The removal of cells from the outer of area pellucida or from the area opaca had no effect on the number of PGCs. When another set of the manipulated embryos were cultured ex vivo to hatching and reared to sexual maturity, the absence of germ cells and the degeneration of seminiferous tubules were observed in resulting chickens derived from the blastoderm from which the cells were removed from the center of the area pellucida.


Biology of Reproduction | 2005

Microinjection of Cytoplasm or Mitochondria Derived from Somatic Cells Affects Parthenogenetic Development of Murine Oocytes

Kumiko Takeda; Mariko Tasai; Masaki Iwamoto; Akira Onishi; Takahiro Tagami; Keijiro Nirasawa; Hirofumi Hanada; Carl A. Pinkert

Abstract Cloned mammals are readily obtained by nuclear transfer using cultured somatic cells; however, the rate of generating live offspring from the reconstructed embryos remains low. In nuclear transfer procedures, varying quantities of donor cell mitochondria are transferred with nuclei into recipient oocytes, and mitochondrial heteroplasmy has been observed. A mouse model was used to examine whether transferred mitochondria affect the development of the reconstructed oocytes. Cytoplasm or purified mitochondria from somatic cells derived from the external ear, skeletal muscle, and testis of Mus spretus mice or cumulus cells of Mus musculus domesticus mice were transferred into M. m. domesticus (B6SJLF1 and B6D2F1) oocytes to observe parthenogenetic development through the morula stage. All B6D2F1 oocytes injected with somatic cytoplasm or mitochondria showed delayed development when compared to oocytes injected with buffer. The developmental rates were not different among injected cell sources, with the exception of testis-derived donor cells injected into B6SJLF1 oocytes (P < 0.01). The developmental rate of B6D2F1 oocytes injected with buffer alone (98.8% survival) was different from those injected with somatic cytoplasm (60.8% survival) or somatic mitochondria (56.5% survival) (P < 0.01). Conversely, injection of ooplasm into B6D2F1 oocytes did not affect parthenogenetic development (100% survival). Our results indicate that injection of somatic cytoplasm or mitochondria affected parthenogenetic development of murine oocytes. These results have further implications for in vitro fertilization protocols employing ooplasmic transfer where primary oocyte failure is not confirmed.


Scientific Reports | 2016

Targeted mutagenesis in chicken using CRISPR/Cas9 system

Isao Oishi; Kyoko Yoshii; Daichi Miyahara; Hiroshi Kagami; Takahiro Tagami

The CRISPR/Cas9 system is a simple and powerful tool for genome editing in various organisms including livestock animals. However, the system has not been applied to poultry because of the difficulty in accessing their zygotes. Here we report the implementation of CRISPR/Cas9-mediated gene targeting in chickens. Two egg white genes, ovalbumin and ovomucoid, were efficiently (>90%) mutagenized in cultured chicken primordial germ cells (PGCs) by transfection of circular plasmids encoding Cas9, a single guide RNA, and a gene encoding drug resistance, followed by transient antibiotic selection. We transplanted CRISPR-induced mutant-ovomucoid PGCs into recipient chicken embryos and established three germline chimeric roosters (G0). All of the roosters had donor-derived mutant-ovomucoid spermatozoa, and the two with a high transmission rate of donor-derived gametes produced heterozygous mutant ovomucoid chickens as about half of their donor-derived offspring in the next generation (G1). Furthermore, we generated ovomucoid homozygous mutant offspring (G2) by crossing the G1 mutant chickens. Taken together, these results demonstrate that the CRISPR/Cas9 system is a simple and effective gene-targeting method in chickens.


Biology of Reproduction | 2007

A Novel Method to Isolate Primordial Germ Cells and Its Use for the Generation of Germline Chimeras in Chicken

Yasuhiro Yamamoto; Fumitake Usui; Yoshiaki Nakamura; Yohei Ito; Takahiro Tagami; Keijiro Nirasawa; Yuko Matsubara; Tamao Ono; Hiroshi Kagami

Abstract A novel method was developed to isolate chick primordial germ cells (PGCs) from circulating embryonic blood. This is a very simple and rapid method for the isolation of circulating PGCs (cPGCs) using an ammonium chloride-potassium (ACK) buffer for lysis of the red blood cells. The PGCs were purified as in vitro culture proceeded. Most of the initial red blood cells were removed in the first step using the ACK lysis buffer. The purity of the cPGCs after ACK treatment was 57.1%, and the recovery rate of cPGCs from whole blood was 90.3%. The ACK process removed only red blood cells and it did not affect cPGC morphology. In the second step, the red blood cells disappeared as the culture progressed. At 7 days of in vitro culture, the purity of the PGCs was 92.9%. Most of these cells expressed germline-specific antibodies, such as those against chicken vasa homolog (CVH). The cultured PGCs expressed the Cvh and Dazl genes. Chimeric chickens were produced from these cultured PGCs, and the donor cells were detected in the gonads, suggesting that the PGCs had biological function. In conclusion, this novel isolation system for PGCs should be easier to use than previous methods. The results of the present study suggest that this novel method will become a powerful tool for germline manipulation in the chicken.


Biology of Reproduction | 2010

Germline replacement by transfer of primordial germ cells into partially sterilized embryos in the chicken.

Yoshiaki Nakamura; Fumitake Usui; Tamao Ono; Kumiko Takeda; Keijiro Nirasawa; Hiroshi Kagami; Takahiro Tagami

We report a novel technique for almost complete replacement of the recipient germline with donor germ cells in the chicken. Busulfan solubilized in a sustained-release emulsion was injected into the yolk of fertile eggs before incubation. A dose of 100 μg was found to provide the best outcome in terms of reducing the number of endogenous primordial germ cells (PGCs) in embryonic gonads (0.6% of control numbers) and hatchability (36.4%). This was applied for preparing partially sterilized embryos to serve as recipients for the transfer of exogenous PGCs. Immunohistochemical analysis showed that the proportion of donor PGCs in busulfan-treated embryos was significantly higher than in controls (98.6% vs. 6.4%). Genetic cross-test analysis revealed that the germline transmission rate in busulfan-treated chickens was significantly higher than in controls (99.5% vs. 6.0%). Of 11 chimeras, 7 produced only donor-derived progenies, suggesting that these produced only donor-derived gametes in the recipients gonads. This novel germline replacement technique provides a powerful tool for studying germline differentiation, for generating transgenic individuals, and for conserving genetic resources in birds.


Development Growth & Differentiation | 2013

Development, differentiation and manipulation of chicken germ cells

Yoshiaki Nakamura; Hiroshi Kagami; Takahiro Tagami

Germ cells are the only cell type capable of transmitting genetic information to the next generation. During development, they are set aside from all somatic cells of the embryo. In many species, germ cells form at the fringe of the embryo proper and then traverse through several developing somatic tissues on their migration to the emerging gonads. Primordial germ cells (PGCs) are the only cells in developing embryos with the potential to transmit genetic information to the next generation. Unlike other species, in avian embryos, PGCs use blood circulation for transport to the future gonadal region. This unique accessibility of avian PGCs during early development provides an opportunity to collect and transplant PGCs. The recent development of methods for production of germline chimeras by transfer of PGCs, and long‐term cultivation methods of chicken PGCs without losing their germline transmission ability have provided important breakthroughs for the preservation of germplasm , for the production of transgenic birds and study the germ cell system. This review will describe the development, migration, differentiation and manipulation of germ cells, and discuss the prospects that germ cell technologies offer for agriculture, biotechnology and academic research.


Mitochondrion | 2010

Microinjection of serum-starved mitochondria derived from somatic cells affects parthenogenetic development of bovine and murine oocytes

Kumiko Takeda; Mariko Tasai; Satoshi Akagi; Kazutsugu Matsukawa; Seiya Takahashi; Masaki Iwamoto; Kanokwan Srirattana; Akira Onishi; Takahiro Tagami; Keijiro Nirasawa; Hirofumi Hanada; Carl A. Pinkert

Microinjection of isolated mitochondria into oocytes is an effective method to introduce exogenous mitochondrial DNA. In nuclear transfer procedures in which donor cell mitochondria are transferred with nuclei into recipient oocytes; development and survival rates of reconstructed embryos may be also directly influenced by mitochondrial viability. Mitochondrial viability is dramatically affected by cell culture conditions, such as serum starvation prior to nuclear transfer. This study was conducted to examine the influence of exogenous mitochondria using bovine and mouse parthenogenetic models. Mitochondria were isolated from primary cells at confluency and after serum starvation. The bovine oocytes injected with serum-starved mitochondria showed lower rates of morula and blastocyst formation when compared to uninjected controls (P<0.05). However, the developmental rates between non-starved mitochondria injection and controls were not different (P>0.05). The murine oocytes injected with serum-starved mitochondria showed lower rates of development when compared with non-starved mitochondria and controls (P<0.01). In contrast to mitochondria transfer, ooplasm transfer did not affect murine or bovine parthenogenetic development (P>0.05). The overall results showed that injection of serum-starved mitochondria influenced parthenogenetic development of both bovine and murine oocytes. Our results illustrate that the somatic mitochondria introduction accompanying nuclei has the capacity to affect reconstructed embryo development; particularly when using serum-starved cells as donor cells.


Zygote | 2005

Effects of caffeine treatment on aged porcine oocytes: parthenogenetic activation ability, chromosome condensation and development to the blastocyst stage after somatic cell nuclear transfer

Masaki Iwamoto; Akira Onishi; Dai-ichiro Fuchimoto; T. Somfai; Shunichi Suzuki; Satoko Yazaki; Michiko Hashimoto; Kumiko Takeda; Takahiro Tagami; Hirofumi Hanada; Junko Noguchi; Hiroyuki Kaneko; Takashi Nagai; Kazuhiro Kikuchi

The possibility of using aged porcine oocytes treated with caffeine, which inhibits the decrease in M-phase promoting factor activity, for pig cloning was evaluated. Cumulus-oocyte complexes (COCs) were cultured initially for 36 h and subsequently with or without 5 mM caffeine for 24 h (in total for 60 h: 60CA+ or 60CA- group, respectively). As a control group, COCs were cultured for 48 h without caffeine (48CA-). The pronuclear formation rates at 10 h after electrical stimulation in the 60CA+ and 60CA- groups decreased significantly (p < 0.05) compared with the 48CA- group. However, the fragmentation rate was significantly higher (p < 0.05) in the 60CA- group than in the 60CA+ and 48CA- groups. When the stimulated oocytes were cultured for 6 days, the 60CA+ group showed significantly lower blastocyst formation and higher fragmentation or degeneration rates (p < 0.05) than the 48CA- group. However, the number of total cells in blastocysts was not affected by maturation period or caffeine treatment. When somatic cell nuclei were injected into the non-enucleated oocytes and exposed to cytoplasm for a certain duration (1-11 h) before the completion of maturation (48 or 60 h), the rate of nuclear membrane breakdown after exposure to cytoplasm for 1-2 h in the 60CA- oocytes was significantly lower (p < 0.05) than in the other experimental groups. The rate of scattered chromosome formation in the same 60CA- group tended to be lower (p = 0.08) than in the other groups. After the enucleation and transfer of nuclei, blastocyst formation rates in the 60CA+ and 60CA- groups were significantly lower (p < 0.05) than in the 48CA- group. Blastocyst quality did not differ among all the groups. These results suggest that chromosome decondensation of the transplanted somatic nucleus is affected by both the duration of exposure to cytoplasm and the age of the recipient porcine oocytes, and that caffeine treatment promotes nuclear remodelling but does not prevent the decrease in the developmental ability of cloned embryos caused by oocyte aging.


Reproduction, Fertility and Development | 2010

Efficient system for preservation and regeneration of genetic resources in chicken: concurrent storage of primordial germ cells and live animals from early embryos of a rare indigenous fowl (Gifujidori)

Yoshiaki Nakamura; Fumitake Usui; Daichi Miyahara; Takafumi Mori; Tamao Ono; Kumiko Takeda; Keijiro Nirasawa; Hiroshi Kagami; Takahiro Tagami

The unique accessibility of chicken primordial germ cells (PGCs) during early development provides the opportunity to combine the reproduction of live animals with genetic conservation. Male and female Gifujidori fowl (GJ) PGCs were collected from the blood of early embryos, and cryopreserved in liquid nitrogen for >6 months until transfer. Manipulated GJ embryos were cultured until hatching; fertility tests indicated that they had normal reproductive abilities. Embryos from two lines of White Leghorn (24HS, ST) were used as recipients for chimera production following blood removal. The concentration of PGCs in the early embryonic blood of 24HS was significantly higher than in ST (P < 0.05). Frozen-thawed GJ PGCs were microinjected into the bloodstream of same-sex recipients. Offspring originating from GJ PGCs in ST recipients were obtained with a higher efficiency than those originating from GJ PGCs in 24HS recipients (23.3% v. 3.1%). Additionally, GJ progeny were successfully regenerated by crossing germline chimeras of the ST group. In conclusion, the cryogenic preservation of PGCs from early chicken embryos was combined with the conservation of live animals.


Reproduction, Fertility and Development | 2008

Increased proportion of donor primordial germ cells in chimeric gonads by sterilisation of recipient embryos using busulfan sustained-release emulsion in chickens.

Yoshiaki Nakamura; Yasuhiro Yamamoto; Fumitake Usui; Yusuke Atsumi; Yohei Ito; Tamao Ono; Kumiko Takeda; Keijiro Nirasawa; Hiroshi Kagami; Takahiro Tagami

The aim of the present study was to improve the efficiency of endogenous primordial germ cell (PGC) depletion and to increase the ratio of donor PGCs in the gonads of recipient chicken embryos. A sustained-release emulsion was prepared by emulsifying equal amounts of Ca(2+)- and Mg(2+)-free phosphate-buffered saline containing 10% busulfan solubilised in N,N-dimethylformamide and sesame oil, using a filter. Then, 75 microg per 50 microL busulfan sustained-release emulsion was injected into the yolk. To determine the depletion and repopulation of PGCs in the gonads after 6 days incubation, whole-mount immunostaining was performed. The busulfan sustained-release emulsion significantly reduced the number of endogenous PGCs compared with control (P < 0.05). Moreover, the busulfan sustained-release emulsion significantly depleted endogenous PGCs compared with other previously reported busulfan delivery systems (P < 0.05), but with less variation, suggesting that the sustained-release emulsion delivered a consistent amount of busulfan to the developing chicken embryos. The PGC transfer study showed that the proportion of donor PGCs in the gonads of busulfan sustained-release emulsion-treated embryos after 6 days incubation increased 28-fold compared with control. In conclusion, the results demonstrate that exogenous PGCs are capable of migrating and settling in gonads from which endogenous PGCs have been removed using a busulfan sustained-release emulsion.

Collaboration


Dive into the Takahiro Tagami's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keijiro Nirasawa

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar

Kumiko Takeda

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hirofumi Hanada

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mariko Tasai

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge