Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takahito Nei is active.

Publication


Featured researches published by Takahito Nei.


Journal of Medical Genetics | 2011

Adult-onset hereditary pulmonary alveolar proteinosis caused by a single-base deletion in CSF2RB

Takeshi Tanaka; Natsuki Motoi; Yoshiko Tsuchihashi; Ryushi Tazawa; Chinatsu Kaneko; Takahito Nei; Toshiyuki Yamamoto; Tomayoshi Hayashi; Tsutomu Tagawa; Takeshi Nagayasu; Futoshi Kuribayashi; Koya Ariyoshi; Koh Nakata; Konosuke Morimoto

Background Disruption of granulocyte/macrophage colony-stimulating factor (GM-CSF) signalling causes pulmonary alveolar proteinosis (PAP). Rarely, genetic defects in neonatal or infant-onset PAP have been identified in CSF2RA. However, no report has clearly identified any function-associated genetic defect in CSF2RB. Methods and results The patient was diagnosed with PAP at the age of 36 and developed respiratory failure. She was negative for GM-CSF autoantibody and had no underlying disease. Signalling and genetic defects in GM-CSF receptor were screened. GM-CSF-stimulated STAT5 phosphorylation was not observed and GM-CSF-Rβc expression was defective in the patients blood cells. Genetic screening revealed a homozygous, single-base deletion at nt 631 in exon 6 of CSF2RB on chromosome 22, which caused reductions in GM-CSF dependent signalling and function. Both parents, who were second cousins, showed no pulmonary symptoms, and had normal GM-CSF-signalling, but had a CSF2RB allele with the identical deletion, indicating that the mutant allele may give rise to PAP in an autosomal recessive manner. Conclusions This is the first report identifying a genetic defect in CSF2RB that causes deficiency of GM-CSF-Rβc expression and impaired signalling downstream. These results suggested that GM-CSF signalling was compensated by other signalling pathways, leading to adult-onset PAP.


Respiratory Research | 2014

Pirfenidone inhibits fibrocyte accumulation in the lungs in bleomycin-induced murine pulmonary fibrosis

Minoru Inomata; Koichiro Kamio; Arata Azuma; Kuniko Matsuda; Nariaki Kokuho; Yukiko Miura; Hiroki Hayashi; Takahito Nei; Kazue Fujita; Yoshinobu Saito; Akihiko Gemma

BackgroundBone marrow-derived fibrocytes reportedly play important roles in the pathogenesis of idiopathic pulmonary fibrosis. Pirfenidone is an anti-fibrotic agent; however, its effects on fibrocytes have not been investigated. The aim of this study was to investigate whether pirfenidone inhibits fibrocyte pool size in the lungs of bleomycin-treated mice.MethodsBleomycin (100 mg/kg) was infused with osmotic pumps into C57BL/6 mice, and pirfenidone (300 mg/kg/day) was orally administered daily for 2 wk. The lungs were removed, and single-cell suspensions were subjected to fluorescence-activated cell sorter (FACS) analysis to detect fibrocytes, which were defined as CD45 and collagen-I double-positive cells. Immunohistochemistry was performed on the lung specimens to quantify fibrocytes. Chemokines in the lung digests were measured with enzyme-linked immunosorbent assay. The effect of pirfenidone on alveolar macrophages was evaluated with bronchoalveolar lavage (BAL). In a therapeutic setting, pirfenidone administration was initiated 10 days after bleomycin treatment. For chemotaxis assay, lung fibrocytes were isolated with immunomagnetic selection (CD45-positive mesenchymal cells) after culture and allowed to migrate toward chemokines in the presence or absence of pirfenidone. Moreover, the effect of pirfenidone on the expression of chemokine receptors on fibrocytes was evaluated.ResultsPirfenidone significantly ameliorated bleomycin-induced pulmonary fibrosis as assessed with quantitative histology and collagen measurement. Fibrocyte pool size in bleomycin-treated mice lungs was attenuated from 26.5% to 13.7% by pirfenidone on FACS analysis. This outcome was also observed in a therapeutic setting. Immunohistochemistry revealed that fibrocytes were significantly decreased by pirfenidone administration compared with those in bleomycin-treated mice (P = 0.0097). Increased chemokine (CC motif) ligand-2 (CCL2) and CCL12 production in bleomycin-treated mouse lungs was significantly attenuated by pirfenidone (P = 0.0003 and P < 0.0001, respectively). Pirfenidone also attenuated macrophage counts stimulated by bleomycin in BAL fluid. Fibrocyte migration toward CCL2 and chemokine (CC motif) receptor-2 expression on fibrocytes was significantly inhibited by pirfenidone in vitro.ConclusionsPirfenidone attenuated the fibrocyte pool size in bleomycin-treated mouse lungs via attenuation of CCL2 and CCL12 production in vivo, and fibrocyte migration was inhibited by pirfenidone in vitro. Fibrocyte inhibition is considered a mechanism of anti-fibrotic action of pirfenidone.


Chest | 2014

Duration of Benefit in Patients With Autoimmune Pulmonary Alveolar Proteinosis After Inhaled Granulocyte-Macrophage Colony-Stimulating Factor Therapy

Ryushi Tazawa; Yoshikazu Inoue; Toru Arai; Toshinori Takada; Yasunori Kasahara; Masayuki Hojo; Shinya Ohkouchi; Yoshiko Tsuchihashi; Masanori Yokoba; Ryosuke Eda; Hideaki Nakayama; Haruyuki Ishii; Takahito Nei; Konosuke Morimoto; Yasuyuki Nasuhara; Masahito Ebina; Masanori Akira; Toshio Ichiwata; Koichiro Tatsumi; Etsuro Yamaguchi; Koh Nakata

BACKGROUND Treatment of autoimmune pulmonary alveolar proteinosis (aPAP) by subcutaneous injection or inhaled therapy of granulocyte-macrophage colony-stimulating factor (GM-CSF) has been demonstrated to be safe and efficacious in several reports. However, some reports of subcutaneous injection described transient benefit in most instances. The durability of response to inhaled GM-CSF therapy is not well characterized. METHODS To elucidate the risk factors for recurrence of aPAP after GM-CSF inhalation, 35 patients were followed up, monitoring for the use of any additional PAP therapies and disease severity score every 6 months. Physiologic, serologic, and radiologic features of the patients were analyzed for the findings of 30-month observation after the end of inhalation therapy. RESULTS During the observation, 23 patients remained free from additional treatments, and twelve patients required additional treatments. There were no significant differences in age, sex, symptoms, oxygenation indexes, or anti-GM-CSF antibody levels at the beginning of treatment between the two groups. Baseline vital capacity (% predicted, %VC) were higher among those who required additional treatment (P<.01). Those patients not requiring additional treatment maintained the improved disease severity score initially achieved. A significant difference in the time to additional treatment between the high %VC group (%VC≥80.5) and the low %VC group was seen by a Kaplan-Meier analysis and a log-rank test (P<.0005). CONCLUSIONS These results demonstrate that inhaled GM-CSF therapy sustained remission of aPAP in more than one-half of cases, and baseline %VC might be a prognostic factor for disease recurrence. TRIAL REGISTRY ISRCTN Register and JMACCT Clinical Trial Registry; No.: ISRCTN18931678 and JMAIIA00013; URL: http://www.isrctn.org and http://www.jmacct.med.or.jp.


Journal of Clinical Microbiology | 2012

First Report of Infectious Pericarditis Due to Bordetella holmesii in an Adult Patient with Malignant Lymphoma

Takahito Nei; Hideya Hyodo; Kazunari Sonobe; Kazuo Dan; Ryoichi Saito

ABSTRACT Bordetella holmesii is a fastidious Gram-negative rod first identified in 1995. Though rare, it is isolated mainly in immunocompromised and asplenic hosts and is associated with bacteremia, pertussis-like respiratory tract infection, and endocarditis. Herein, we describe a unique B. holmesii infectious pericarditis patient with malignant lymphoma.


Respiratory Medicine | 2012

Direct evidence that GM-CSF inhalation improves lung clearance in pulmonary alveolar proteinosis

Kazumasa Ohashi; Atsuyasu Sato; Toshinori Takada; Toru Arai; Takahito Nei; Yasunori Kasahara; Natsuki Motoi; Masayuki Hojo; Shinya Urano; Haruyuki Ishii; Masanori Yokoba; Ryosuke Eda; Hideaki Nakayama; Yasuyuki Nasuhara; Yoshiko Tsuchihashi; Chinatsu Kaneko; Hiroko Kanazawa; Masahito Ebina; Etsuro Yamaguchi; Jacqueline Kirchner; Yoshikazu Inoue; Koh Nakata; Ryushi Tazawa

BACKGROUND Autoimmune pulmonary alveolar proteinosis (aPAP) is caused by granulocyte/macrophage-colony stimulating factor (GM-CSF) autoantibodies in the lung. Previously, we reported that GM-CSF inhalation therapy improved alveolar-arterial oxygen difference and serum biomarkers of disease severity in these patients. It is plausible that inhaled GM-CSF improves the dysfunction of alveolar macrophages and promotes the clearance of the surfactant. However, effect of the therapy on components in bronchoalveolar lavage fluid (BALF) remains unclear. OBJECTIVES To figure out changes in surfactant clearance during GM-CSF inhalation therapy. METHODS We performed retrospective analyses of BALF obtained under a standardized protocol from the same bronchus in each of 19 aPAP patients before and after GM-CSF inhalation therapy (ISRCTN18931678, JMA-IIA00013; total dose 10.5-21 mg, duration 12-24 weeks). For evaluation, the participants were divided into two groups, high responders with improvement in alveolar-arterial oxygen difference ≥13 mmHg (n = 10) and low responders with that < 13 mmHg (n = 9). RESULTS Counts of both total cells and alveolar macrophages in BALF did not increase during the therapy. However, total protein and surfactant protein-A (SP-A) were significantly decreased in high responders, but not in low responders, suggesting that clearance of surfactant materials is correlated with the efficacy of the therapy. Among 94 biomarkers screened in bronchoalveolar lavage fluid, we found that the concentration of interleukin-17 and cancer antigen-125 were significantly increased after GM-CSF inhalation treatment. CONCLUSIONS GM-CSF inhalation decreased the concentration of total protein and SP-A in BALF, and increase interleukin-17 and cancer antigen-125 in improved lung of autoimmune pulmonary alveolar proteinosis.


Journal of Infection and Chemotherapy | 2012

A case of streptococcal toxic shock syndrome due to Group G streptococci identified as Streptococcus dysgalactiae subsp. equisimilis

Takahito Nei; Koichi Akutsu; Ayaka Shima; Ippei Tsuboi; Hiroomi Suzuki; Takeshi Yamamoto; Keiji Tanaka; Akihiro Shinoyama; Yoshiko Kojima; Yohei Washio; Sakina Okawa; Kazunari Sonobe; Yoshihiko Norose; Ryoichi Saito

A 79-year-old man with a 3-month history of lymphedema of the lower limbs, and diabetes mellitus, was admitted to our hospital for suspected deep venous thrombosis. Several hours after admission, leg pain and purpura-like skin color appeared. On the 2nd hospital day, he was referred to our department for possible acute occlusive peripheral artery disease (PAD) and skin necrosis with blisters; however, computed tomography with contrast showed no occlusive lesions. He had already developed shock and necrotizing deep soft-tissue infections of the left lower leg. Laboratory findings revealed renal dysfunction and coagulation system collapse. Soon after PAD was ruled out, clinical findings suggested necrotizing deep soft-tissue infections, shock state, disseminated intravascular coagulation, and multiple organ failure. These symptoms led to a high suspicion of the well-recognized streptococcal toxic shock syndrome (STSS). With a high suspicion of STSS, we detected Group G β-hemolytic streptococci (GGS) from samples aspirated from the leg bullae, and the species was identified as Streptococcus dysgalactiae subsp. equisimilis (SDSE) by 16S-ribosomal RNA sequencing. However, unfortunately, surgical debridement was impossible due to the broad area of skin change. Despite adequate antimicrobial therapy and intensive care, the patient died on the 3rd hospital day. The M-protein gene (emm) typing of the isolated SDSE was revealed to be stG6792. This type of SDSE is the most frequent cause of STSS due to GGS in Japan. We consider it to be crucial to rapidly distinguish STSS from acute occlusive PAD to achieve life-saving interventions in patients with severe soft-tissue infections.


Respiratory medicine case reports | 2013

A non-HIV case with disseminated Mycobacterium kansasii disease associated with strong neutralizing autoantibody to interferon-γ.

Takahito Nei; Masahiro Okabe; Iwao Mikami; Yumika Koizumi; Hiroshi Mase; Kuniko Matsuda; Takeshi Yamamoto; Shinhiro Takeda; Keiji Tanaka; Kazuo Dan

Disseminated non-tuberculous mycobacterium (dNTM) infection is rare in humans without human immunodeficiency virus (HIV) infection. Previous reports have shown autoantibodies to human interferon-gamma (IFN-γ), which play important roles in mycobacterium infection, in the sera of patients with non-HIV dNTM disease. Herein, we describe a 53-year-old male who was strongly suspected to have multicentric Castleman disease (MCD) based on bone marrow study and chest radiological findings. However, Mycobacterium kansasii was detected in respiratory samples including pleural effusion. We initiated anti-mycobacterial therapy under intensive care; he died on the 48th hospital day. We detected no hematological disorders, ruling out MCD postmortem. However, we detected M. kansasii in pulmonary, liver, spleen and bone marrow tissues. Moreover, anti-IFN-γ autoantibody was detected with strong neutralizing capacity for IFN-γ. We consider our present report to contribute to understanding of the relationship between anti-IFN-γ autoantibody and disease development.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2012

IgM-type GM-CSF autoantibody is etiologically a bystander but associated with IgG-type autoantibody production in autoimmune pulmonary alveolar proteinosis

Takahito Nei; Shinya Urano; Natsuki Motoi; Jun Takizawa; Chinatsu Kaneko; Hiroko Kanazawa; Ryushi Tazawa; Kazuhide Nakagaki; Kiyoko S. Akagawa; Keiichi Akasaka; Toshio Ichiwata; Arata Azuma; Koh Nakata

The granulocyte-macrophage colony-stimulating factor (GM-CSF) autoantibody (GMAb) is the causative agent underlying autoimmune pulmonary alveolar proteinosis (aPAP). It consists primarily of the IgG isotype. At present, information on other isotypes of the autoantibody is limited. We detected serum the IgM isotype of GMAb (IgM-GMAb) in more than 80% of patients with aPAP and 22% of healthy subjects, suggesting that a continuous antigen pressure may be present in most patients. Levels of the IgM isotype were weakly correlated with IgG-GMAb levels but not IgA-GMAb, suggesting that its production may be associated with that of IgG-GMAb. The mean binding avidity to GM-CSF of the IgM isotype was 100-fold lower than the IgG-GMAb isotype, whereas the IC(50) value for neutralizing capacity was 20,000-fold higher than that of IgG-GMAb, indicating that IgM-GMAb is only a very weak neutralizer of GM-CSF. In bronchoalveolar lavage fluid from nine patients, IgG-GMAb was consistently detected, but IgM-GMAb was under the detection limit in most patients, confirming that IgM-GMAb is functionally a bystander in the pathogenesis of aPAP. It rather may be involved in the mechanism for development of IgG-GMAb in vivo.


BMC Research Notes | 2015

Streptobacillus moniliformis bacteremia in a rheumatoid arthritis patient without a rat bite: a case report

Takahito Nei; Akiko Sato; Kazunari Sonobe; Yoshihiko Miura; Kenji Takahashi; Ryoichi Saito

BackgroundRat bite fever is a relatively rare infectious disease due to infection with Streptobacillus moniliformis or Spirillum minus mainly via directs bite by rats, mice, or other rodents. If there is no clear bite history, the diagnosis is difficult or may not be made.Case presentationA 72-year-old Asian female with rheumatoid arthritis was admitted for high grade fever and walking difficulty with severe lumbago. Initially, we suspected lumber compression fracture with deterioration of rheumatoid arthritis, but Gram-negative bacilli were isolated from blood culture during hospitalization. The isolated organism was identified as S. moniliformis by 16S ribosomal ribonucleic acid (rRNA) sequencing. S. moniliformis is well known to be a primary causative organism of rat bite fever, but this patient had no history of rat bite. Had S. moniliformis bacteremia not been detected, she might have been treated for rheumatic exacerbation.ConclusionWe emphasize the importance of performing appropriate microbial culture testing for identifying potential infectious diseases. We also conclude that S. moniliformis infection can become established with contaminated vehicle contact alone, not only as a direct result of a bite. We must keep mind that those working in places where rodents breed or are at risk of contact with rats or mice might be at risk for contracting this unusual disease.


Respirology | 2008

Transbronchial biopsy is clinically useful in classifying patients with interstitial pneumonia associated with polymyositis and dermatomyositis.

Hiroshi Mochimaru; Masashi Kawamoto; Yoshinobu Saitoh; Shinji Abe; Takahito Nei; Yuh Fukuda; Shoji Kudoh

Background and objective:  The histological type of intraluminal fibrosis is an important prognostic factor for interstitial pneumonia. We therefore examined whether transbronchial lung biopsy (TBLB) specimens are useful for predicting the clinical course and prognosis of patients with interstitial pneumonia associated with polymyositis and dermatomyositis (PM/DM), with particular attention to the different types of intraluminal fibrosis.

Collaboration


Dive into the Takahito Nei's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoshikazu Inoue

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge