Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takaho Terada is active.

Publication


Featured researches published by Takaho Terada.


Cell | 2007

Curved EFC/F-BAR-Domain Dimers Are Joined End to End into a Filament for Membrane Invagination in Endocytosis

Atsushi Shimada; Hideaki Niwa; Kazuya Tsujita; Shiro Suetsugu; Koji Nitta; Kyoko Hanawa-Suetsugu; Ryogo Akasaka; Yuri Nishino; Mitsutoshi Toyama; Lirong Chen; Zhi-Jie Liu; Bi-Cheng Wang; Masaki Yamamoto; Takaho Terada; Atsuo Miyazawa; Akiko Tanaka; Sumio Sugano; Mikako Shirouzu; Kuniaki Nagayama; Tadaomi Takenawa; Shigeyuki Yokoyama

Pombe Cdc15 homology (PCH) proteins play an important role in a variety of actin-based processes, including clathrin-mediated endocytosis (CME). The defining feature of the PCH proteins is an evolutionarily conserved EFC/F-BAR domain for membrane association and tubulation. In the present study, we solved the crystal structures of the EFC domains of human FBP17 and CIP4. The structures revealed a gently curved helical-bundle dimer of approximately 220 A in length, which forms filaments through end-to-end interactions in the crystals. The curved EFC dimer fits a tubular membrane with an approximately 600 A diameter. We subsequently proposed a model in which the curved EFC filament drives tubulation. In fact, striation of tubular membranes was observed by phase-contrast cryo-transmission electron microscopy, and mutations that impaired filament formation also impaired membrane tubulation and cell membrane invagination. Furthermore, FBP17 is recruited to clathrin-coated pits in the late stage of CME, indicating its physiological role.


Nature Structural & Molecular Biology | 2000

Structural genomics projects in Japan.

Shigeyuki Yokoyama; Hiroshi Hirota; Takanori Kigawa; Takashi Yabuki; Mikako Shirouzu; Takaho Terada; Yutaka Ito; Yo Matsuo; Yutaka Kuroda; Yoshifumi Nishimura; Yoshimasa Kyogoku; Kunio Miki; Ryoji Masui; Seiki Kuramitsu

Two major structural genomics projects exist in Japan. The oldest, the RIKEN Structural Genomics Initiative, has two major goals: to determine bacterial, mammalian, and plant protein structures by X-ray crystallography and NMR spectroscopy and to perform functional analyses with the target proteins. The newest, the structural genomics project at the Biological Information Research Center, focuses on human membrane proteins.


The Plant Cell | 2005

Solution Structure of an Arabidopsis WRKY DNA Binding Domain

Kazuhiko Yamasaki; Takanori Kigawa; Makoto Inoue; Masaru Tateno; Tomoko Yamasaki; Takashi Yabuki; Masaaki Aoki; Eiko Seki; Takayoshi Matsuda; Yasuko Tomo; Nobuhiro Hayami; Takaho Terada; Mikako Shirouzu; Akiko Tanaka; Motoaki Seki; Kazuo Shinozaki; Shigeyuki Yokoyama

The WRKY proteins comprise a major family of transcription factors that are essential in pathogen and salicylic acid responses of higher plants as well as a variety of plant-specific reactions. They share a DNA binding domain, designated as the WRKY domain, which contains an invariant WRKYGQK sequence and a CX4–5CX22–23HXH zinc binding motif. Herein, we report the NMR solution structure of the C-terminal WRKY domain of the Arabidopsis thaliana WRKY4 protein. The structure consists of a four-stranded β-sheet, with a zinc binding pocket formed by the conserved Cys/His residues located at one end of the β-sheet, revealing a novel zinc and DNA binding structure. The WRKYGQK residues correspond to the most N-terminal β-strand, kinked in the middle of the sequence by the Gly residue, which enables extensive hydrophobic interactions involving the Trp residue and contributes to the structural stability of the β-sheet. Based on a profile of NMR chemical shift perturbations, we propose that the same strand enters the DNA groove and forms contacts with the DNA bases.


The Plant Cell | 2004

Solution Structure of the B3 DNA Binding Domain of the Arabidopsis Cold-Responsive Transcription Factor RAV1

Kazuhiko Yamasaki; Takanori Kigawa; Makoto Inoue; Masaru Tateno; Tomoko Yamasaki; Takashi Yabuki; Masaaki Aoki; Eiko Seki; Takayoshi Matsuda; Yasuko Tomo; Nobuhiro Hayami; Takaho Terada; Mikako Shirouzu; Takashi Osanai; Akiko Tanaka; Motoaki Seki; Kazuo Shinozaki; Shigeyuki Yokoyama

The B3 DNA binding domain is shared amongst various plant-specific transcription factors, including factors involved in auxin-regulated and abscisic acid–regulated transcription. Herein, we report the NMR solution structure of the B3 domain of the Arabidopsis thaliana cold-responsive transcription factor RAV1. The structure consists of a seven-stranded open β-barrel and two α-helices located at the ends of the barrel and is significantly similar to the structure of the noncatalytic DNA binding domain of the restriction enzyme EcoRII. An NMR titration experiment revealed a DNA recognition interface that enabled us to propose a structural model of the protein–DNA complex. The locations of the DNA-contacting residues are also likely to be similar to those of the EcoRII DNA binding domain.


Journal of Biological Chemistry | 2006

Crystal Structure of the Human BRD2 Bromodomain INSIGHTS INTO DIMERIZATION AND RECOGNITION OF ACETYLATED HISTONE H4

Yoshihiro Nakamura; Takashi Umehara; Kazumi Nakano; Moon Kyoo Jang; Mikako Shirouzu; Satoshi Morita; Hiroko Uda-Tochio; Hiroaki Hamana; Takaho Terada; Naruhiko Adachi; Takehisa Matsumoto; Akiko Tanaka; Masami Horikoshi; Keiko Ozato; Balasundaram Padmanabhan; Shigeyuki Yokoyama

The BET (bromodomains and extra terminal domain) family proteins recognize acetylated chromatin through their bromodomain and act as transcriptional activators. One of the BET proteins, BRD2, associates with the transcription factor E2F, the mediator components CDK8 and TRAP220, and RNA polymerase II, as well as with acetylated chromatin during mitosis. BRD2 contains two bromodomains (BD1 and BD2), which are considered to be responsible for binding to acetylated chromatin. The BRD2 protein specifically recognizes the histone H4 tail acetylated at Lys12. Here, we report the crystal structure of the N-terminal bromodomain (BD1, residues 74-194) of human BRD2. Strikingly, the BRD2 BD1 protein forms an intact dimer in the crystal. This is the first observation of a homodimer among the known bromodomain structures, through the buried hydrophobic core region at the interface. Biochemical studies also demonstrated BRD2 BD1 dimer formation in solution. The two acetyllysine-binding pockets and a negatively charged secondary binding pocket, produced at the dimer interface in BRD2 BD1, may be the unique features that allow BRD2 BD1 to selectively bind to the acetylated H4 tail.


Journal of Biological Chemistry | 2004

Solution Structure of the SEA Domain from the Murine Homologue of Ovarian Cancer Antigen CA125 (MUC16)

Takeshi Maeda; Makoto Inoue; Seizo Koshiba; Takashi Yabuki; Masaaki Aoki; Emi Nunokawa; Eiko Seki; Takayoshi Matsuda; Yoko Motoda; Atsuo Kobayashi; Fumiko Hiroyasu; Mikako Shirouzu; Takaho Terada; Nobuhiro Hayami; Yoshiko Ishizuka; Naoko Shinya; Ayako Tatsuguchi; Mayumi Yoshida; Hiroshi Hirota; Yo Matsuo; Kazutoshi Tani; Takahiro Arakawa; Piero Carninci; Jun Kawai; Yoshihide Hayashizaki; Takanori Kigawa; Shigeyuki Yokoyama

Human CA125, encoded by the MUC16 gene, is an ovarian cancer antigen widely used for a serum assay. Its extracellular region consists of tandem repeats of SEA domains. In this study we determined the three-dimensional structure of the SEA domain from the murine MUC16 homologue using multidimensional NMR spectroscopy. The domain forms a unique α/β sandwich fold composed of two α helices and four antiparallel β strands and has a characteristic turn named the TY-turn between α1 and α2. The internal mobility of the main chain is low throughout the domain. The residues that form the hydrophobic core and the TY-turn are fully conserved in all SEA domain sequences, indicating that the fold is common in the family. Interestingly, no other residues are conserved throughout the family. Thus, the sequence alignment of the SEA domain family was refined on the basis of the three-dimensional structure, which allowed us to classify the SEA domains into several subfamilies. The residues on the surface differ between these subfamilies, suggesting that each subfamily has a different function. In the MUC16 SEA domains, the conserved surface residues, Asn-10, Thr-12, Arg-63, Asp-75, Asp-112, Ser-115, and Phe-117, are clustered on the β sheet surface, which may be functionally important. The putative epitope (residues 58-77) for anti-MUC16 antibodies is located around the β2 and β3 strands. On the other hand the tissue tumor marker MUC1 has a SEA domain belonging to another subfamily, and its GSVVV motif for proteolytic cleavage is located in the short loop connecting β2 and β3.


Chemistry & Biology | 2011

Real-Time Imaging of Histone H4K12–Specific Acetylation Determines the Modes of Action of Histone Deacetylase and Bromodomain Inhibitors

Tamaki Ito; Takashi Umehara; Kazuki Sasaki; Yoshihiro Nakamura; Norikazu Nishino; Takaho Terada; Mikako Shirouzu; Balasundaram Padmanabhan; Shigeyuki Yokoyama; Akihiro Ito; Minoru Yoshida

Histone acetylation constitutes an epigenetic mark for transcriptional regulation. Here we developed a fluorescent probe to visualize acetylation of histone H4 Lys12 (H4K12) in living cells using fluorescence resonance energy transfer (FRET) and the binding of the BRD2 bromodomain to acetylated H4K12. Using this probe designated as Histac-K12, we demonstrated that histone H4K12 acetylation is retained in mitosis and that some histone deacetylase (HDAC) inhibitors continue to inhibit cellular HDAC activity even after their removal from the culture. In addition, a small molecule that interferes with ability of the bromodomain to bind to acetylated H4K12 could be assessed using Histac-K12 in cells. Thus, Histac-K12 will serve as a powerful tool not only to understand the dynamics of H4K12-specific acetylation but also to characterize small molecules that modulate the acetylation or interaction status of histones.


Oncogene | 2013

Structural basis for the altered drug sensitivities of non-small cell lung cancer-associated mutants of human epidermal growth factor receptor

Shingo Yoshikawa; M Kukimoto-Niino; L Parker; Noriko Handa; Takaho Terada; T Fujimoto; Y Terazawa; M Wakiyama; M Sato; S Sano; T Kobayashi; T Tanaka; Lirong Chen; Zhi-Jie Liu; Bi-Cheng Wang; Mikako Shirouzu; S Kawa; Kentaro Semba; Tadashi Yamamoto; Shigeyuki Yokoyama

The epidermal growth factor receptor (EGFR) has an essential role in multiple signaling pathways, including cell proliferation and migration, through extracellular ligand binding and subsequent activation of its intracellular tyrosine kinase (TK) domain. The non-small cell lung cancer (NSCLC)-associated EGFR mutants, L858R and G719S, are constitutively active and oncogenic. They display sensitivity to TK inhibitors, including gefitinib and erlotinib. In contrast, the secondary mutation of the gatekeeper residue, T790M, reportedly confers inhibitor resistance on the oncogenic EGFR mutants. In this study, our biochemical analyses revealed that the introduction of the T790M mutation confers gefitinib resistance on the G719S mutant. The G719S/T790M double mutant has enhanced activity and retains high gefitinib-binding affinity. The T790M mutation increases the ATP affinity of the G719S mutant, explaining the acquired drug resistance of the double mutant. Structural analyses of the G719S/T790M double mutant, as well as the wild type and the G719S and L858R mutants, revealed that the T790M mutation stabilizes the hydrophobic spine of the active EGFR-TK conformation. The Met790 side chain of the G719S/T790M double mutant, in the apo form and gefitinib- and AMPPNP-bound forms, adopts different conformations that explain the accommodation of these ligands. In the L858R mutant structure, the active-site cleft is expanded by the repositioning of Phe723 within the P-loop. Notably, the introduction of the F723A mutation greatly enhanced the gefitinib sensitivity of the wild-type EGFR in vivo, supporting our hypothesis that the expansion of the active-site cleft results in enhanced gefitinib sensitivity. Taken together, our results provide a structural basis for the altered drug sensitivities caused by distinct NSCLC-associated EGFR mutations.


Nature | 2013

Rotation mechanism of Enterococcus hirae V 1 -ATPase based on asymmetric crystal structures

Satoshi Arai; Shinya Saijo; Kano Suzuki; Kenji Mizutani; Yoshimi Kakinuma; Yoshiko Ishizuka-Katsura; Noboru Ohsawa; Takaho Terada; Mikako Shirouzu; Shigeyuki Yokoyama; So Iwata; Ichiro Yamato; Takeshi Murata

In various cellular membrane systems, vacuolar ATPases (V-ATPases) function as proton pumps, which are involved in many processes such as bone resorption and cancer metastasis, and these membrane proteins represent attractive drug targets for osteoporosis and cancer. The hydrophilic V1 portion is known as a rotary motor, in which a central axis DF complex rotates inside a hexagonally arranged catalytic A3B3 complex using ATP hydrolysis energy, but the molecular mechanism is not well defined owing to a lack of high-resolution structural information. We previously reported on the in vitro expression, purification and reconstitution of Enterococcus hirae V1-ATPase from the A3B3 and DF complexes. Here we report the asymmetric structures of the nucleotide-free (2.8 Å) and nucleotide-bound (3.4 Å) A3B3 complex that demonstrate conformational changes induced by nucleotide binding, suggesting a binding order in the right-handed rotational orientation in a cooperative manner. The crystal structures of the nucleotide-free (2.2 Å) and nucleotide-bound (2.7 Å) V1-ATPase are also reported. The more tightly packed nucleotide-binding site seems to be induced by DF binding, and ATP hydrolysis seems to be stimulated by the approach of a conserved arginine residue. To our knowledge, these asymmetric structures represent the first high-resolution view of the rotational mechanism of V1-ATPase.


Journal of Biological Chemistry | 2007

Crystal Structure of the Interleukin-15·Interleukin-15 Receptor α Complex INSIGHTS INTO TRANS AND CIS PRESENTATION

Shaun K. Olsen; Naruhisa Ota; Seiichiro Kishishita; Mutsuko Kukimoto-Niino; Kazutaka Murayama; Hidemi Uchiyama; Mitsutoshi Toyama; Takaho Terada; Mikako Shirouzu; Osami Kanagawa; Shigeyuki Yokoyama

Interleukin (IL)-15 is a pleiotropic cytokine that plays a pivotal role in both innate and adaptive immunity. IL-15 is unique among cytokines due to its participation in a trans signaling mechanism in which IL-15 receptorα (IL-15Rα) from one subset of cells presents IL-15 to neighboring IL-2Rβ/γc-expressing cells. Here we present the crystal structure of IL-15 in complex with the sushi domain of IL-15Rα. The structure reveals that theα receptor-binding epitope of IL-15 adopts a unique conformation, which, together with amino acid substitutions, permits specific interactions with IL-15Rα that account for the exceptionally high affinity of the IL-15·IL-15Rα complex. Interestingly, analysis of the topology of IL-15 and IL-15Rα at the IL-15·IL-15Rα interface suggests that IL-15 should be capable of participating in a cis signaling mechanism similar to that of the related cytokine IL-2. Indeed, we present biochemical data demonstrating that IL-15 is capable of efficiently signaling in cis through IL-15Rα and IL-2Rβ/γc expressed on the surface of a single cell. Based on our data we propose that cis presentation of IL-15 may be important in certain biological contexts and that flexibility of IL-15Rα permits IL-15 and its three receptor components to be assembled identically at the ligand-receptor interface whether IL-15 is presented in cis or trans. Finally, we have gained insights into IL-15·IL-15Rα·IL-2Rβ·γc quaternary complex assembly through the use of molecular modeling.

Collaboration


Dive into the Takaho Terada's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takanori Kigawa

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takayoshi Matsuda

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Eiko Seki

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge