Takaki Maekawa
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Takaki Maekawa.
Science | 2010
Pietro D. Spanu; James Abbott; Joelle Amselem; Timothy A. Burgis; Darren M. Soanes; Kurt Stüber; Emiel Ver Loren van Themaat; J. K. M. Brown; Sarah Butcher; Sarah J. Gurr; Marc-Henri Lebrun; Christopher J. Ridout; Paul Schulze-Lefert; Nicholas J. Talbot; Nahal Ahmadinejad; Christian Ametz; Geraint Barton; Mariam Benjdia; Przemyslaw Bidzinski; Laurence V. Bindschedler; Maike Both; Marin Talbot Brewer; Lance Cadle-Davidson; Molly M. Cadle-Davidson; Jérôme Collemare; Rainer Cramer; Omer Frenkel; Dale I. Godfrey; James Harriman; Claire Hoede
From Blight to Powdery Mildew Pathogenic effects of microbes on plants have widespread consequences. Witness, for example, the cultural upheavals driven by potato blight in the 1800s. A variety of microbial pathogens continue to afflict crop plants today, driving both loss of yield and incurring the increased costs of control mechanisms. Now, four reports analyze microbial genomes in order to understand better how plant pathogens function (see the Perspective by Dodds). Raffaele et al. (p. 1540) describe how the genome of the potato blight pathogen accommodates transfer to different hosts. Spanu et al. (p. 1543) analyze what it takes to be an obligate biotroph in barley powdery mildew, and Baxter et al. (p. 1549) ask a similar question for a natural pathogen of Arabidopsis. Schirawski et al. (p. 1546) compared genomes of maize pathogens to identify virulence determinants. Better knowledge of what in a genome makes a pathogen efficient and deadly is likely to be useful for improving agricultural crop management and breeding. A group of papers analyzes pathogen genomes to find the roots of virulence, opportunism, and life-style determinants. Powdery mildews are phytopathogens whose growth and reproduction are entirely dependent on living plant cells. The molecular basis of this life-style, obligate biotrophy, remains unknown. We present the genome analysis of barley powdery mildew, Blumeria graminis f.sp. hordei (Blumeria), as well as a comparison with the analysis of two powdery mildews pathogenic on dicotyledonous plants. These genomes display massive retrotransposon proliferation, genome-size expansion, and gene losses. The missing genes encode enzymes of primary and secondary metabolism, carbohydrate-active enzymes, and transporters, probably reflecting their redundancy in an exclusively biotrophic life-style. Among the 248 candidate effectors of pathogenesis identified in the Blumeria genome, very few (less than 10) define a core set conserved in all three mildews, suggesting that most effectors represent species-specific adaptations.
Nature Immunology | 2011
Takaki Maekawa; Thomas A. Kufer; Paul Schulze-Lefert
In plants and animals, the NLR family of receptors perceives non-self and modified-self molecules inside host cells and mediates innate immune responses to microbial pathogens. Despite their similar biological functions and protein architecture, animal NLRs are normally activated by conserved microbe- or damage-associated molecular patterns, whereas plant NLRs typically detect strain-specific pathogen effectors. Plant NLRs recognize either the effector structure or effector-mediated modifications of host proteins. The latter indirect mechanism for the perception of non-self, as well as the within-species diversification of plant NLRs, maximize the capacity to recognize non-self through the use of a finite number of innate immunoreceptors. We discuss recent insights into NLR activation, signal initiation through the homotypic association of N-terminal domains and subcellular receptor dynamics in plants and compare those with NLR functions in animals.
Journal of Bacteriology | 2004
Toshiki Uchiumi; Takuji Ohwada; Manabu Itakura; Hisayuki Mitsui; Noriyuki Nukui; Pramod Dawadi; Takakazu Kaneko; Satoshi Tabata; Tadashi Yokoyama; Kouhei Tejima; Kazuhiko Saeki; Hirofumi Omori; Makoto Hayashi; Takaki Maekawa; Rutchadaporn Sriprang; Yoshikatsu Murooka; Shigeyuki Tajima; Kenshiro Simomura; Mika Nomura; Akihiro Suzuki; Yoshikazu Shimoda; Kouki Sioya; Mikiko Abe; Kiwamu Minamisawa
Rhizobia are symbiotic nitrogen-fixing soil bacteria that are associated with host legumes. The establishment of rhizobial symbiosis requires signal exchanges between partners in microaerobic environments that result in mutualism for the two partners. We developed a macroarray for Mesorhizobium loti MAFF303099, a microsymbiont of the model legume Lotus japonicus, and monitored the transcriptional dynamics of the bacterium during symbiosis, microaerobiosis, and starvation. Global transcriptional profiling demonstrated that the clusters of genes within the symbiosis island (611 kb), a transmissible region distinct from other chromosomal regions, are collectively expressed during symbiosis, whereas genes outside the island are downregulated. This finding implies that the huge symbiosis island functions as clustered expression islands to support symbiotic nitrogen fixation. Interestingly, most transposase genes on the symbiosis island were highly upregulated in bacteroids, as were nif, fix, fdx, and rpoN. The genome region containing the fixNOPQ genes outside the symbiosis island was markedly upregulated as another expression island under both microaerobic and symbiotic conditions. The symbiosis profiling data suggested that there was activation of amino acid metabolism, as well as nif-fix gene expression. In contrast, genes for cell wall synthesis, cell division, DNA replication, and flagella were strongly repressed in differentiated bacteroids. A highly upregulated gene in bacteroids, mlr5932 (encoding 1-aminocyclopropane-1-carboxylate deaminase), was disrupted and was confirmed to be involved in nodulation enhancement, indicating that disruption of highly expressed genes is a useful strategy for exploring novel gene functions in symbiosis.
BMC Genomics | 2012
Carsten Pedersen; Emiel Ver Loren van Themaat; Liam J. McGuffin; James Abbott; Timothy A. Burgis; Geraint Barton; Laurence V. Bindschedler; Xunli Lu; Takaki Maekawa; Ralf Weßling; Rainer Cramer; Hans Thordal-Christensen; Ralph Panstruga; Pietro D. Spanu
BackgroundProtein effectors of pathogenicity are instrumental in modulating host immunity and disease resistance. The powdery mildew pathogen of grasses Blumeria graminis causes one of the most important diseases of cereal crops. B. graminis is an obligate biotrophic pathogen and as such has an absolute requirement to suppress or avoid host immunity if it is to survive and cause disease.ResultsHere we characterise a superfamily predicted to be the full complement of Candidates for Secreted Effector Proteins (CSEPs) in the fungal barley powdery mildew parasite B. graminis f.sp. hordei. The 491 genes encoding these proteins constitute over 7% of this pathogen’s annotated genes and most were grouped into 72 families of up to 59 members. They were predominantly expressed in the intracellular feeding structures called haustoria, and proteins specifically associated with the haustoria were identified by large-scale mass spectrometry-based proteomics. There are two major types of effector families: one comprises shorter proteins (100–150 amino acids), with a high relative expression level in the haustoria and evidence of extensive diversifying selection between paralogs; the second type consists of longer proteins (300–400 amino acids), with lower levels of differential expression and evidence of purifying selection between paralogs. An analysis of the predicted protein structures underscores their overall similarity to known fungal effectors, but also highlights unexpected structural affinities to ribonucleases throughout the entire effector super-family. Candidate effector genes belonging to the same family are loosely clustered in the genome and are associated with repetitive DNA derived from retro-transposons.ConclusionsWe employed the full complement of genomic, transcriptomic and proteomic analyses as well as structural prediction methods to identify and characterize the members of the CSEPs superfamily in B. graminis f.sp. hordei. Based on relative intron position and the distribution of CSEPs with a ribonuclease-like domain in the phylogenetic tree we hypothesize that the associated genes originated from an ancestral gene, encoding a secreted ribonuclease, duplicated successively by repetitive DNA-driven processes and diversified during the evolution of the grass and cereal powdery mildew lineage.
PLOS Pathogens | 2012
Shiwei Bai; Jie Liu; Cheng Chang; Ling Zhang; Takaki Maekawa; Qiuyun Wang; Wenkai Xiao; Yule Liu; Jijie Chai; Frank L. W. Takken; Paul Schulze-Lefert; Qian-Hua Shen
Plant intracellular immune receptors comprise a large number of multi-domain proteins resembling animal NOD-like receptors (NLRs). Plant NLRs typically recognize isolate-specific pathogen-derived effectors, encoded by avirulence (AVR) genes, and trigger defense responses often associated with localized host cell death. The barley MLA gene is polymorphic in nature and encodes NLRs of the coiled-coil (CC)-NB-LRR type that each detects a cognate isolate-specific effector of the barley powdery mildew fungus. We report the systematic analyses of MLA10 activity in disease resistance and cell death signaling in barley and Nicotiana benthamiana. MLA10 CC domain-triggered cell death is regulated by highly conserved motifs in the CC and the NB-ARC domains and by the C-terminal LRR of the receptor. Enforced MLA10 subcellular localization, by tagging with a nuclear localization sequence (NLS) or a nuclear export sequence (NES), shows that MLA10 activity in cell death signaling is suppressed in the nucleus but enhanced in the cytoplasm. By contrast, nuclear localized MLA10 is sufficient to mediate disease resistance against powdery mildew fungus. MLA10 retention in the cytoplasm was achieved through attachment of a glucocorticoid receptor hormone-binding domain (GR), by which we reinforced the role of cytoplasmic MLA10 in cell death signaling. Together with our data showing an essential and sufficient nuclear MLA10 activity in disease resistance, this suggests a bifurcation of MLA10-triggered cell death and disease resistance signaling in a compartment-dependent manner.
Plant Journal | 2009
Takaki Maekawa; Makoto Maekawa-Yoshikawa; Naoya Takeda; Haruko Imaizumi-Anraku; Yoshikatsu Murooka; Makoto Hayashi
Root nodule formation is regulated by several plant hormones, but the details of the regulation of the nodulation signaling pathway are largely unknown. In this study, the role of gibberellin (GA) in the control of root nodule symbiosis was investigated at the physiological and genetic levels in Lotus japonicus. Exogenous application of biologically active GA, GA(3), inhibited the formation of infection threads and nodules, which was counteracted by the application of a biosynthesis inhibitor of GA, Uniconazole P. Nod factor-induced root hair deformation was severely blocked in the presence of GA, which was phenocopied by nsp2 mutants. The number of spontaneous nodules triggered by the gain-of-function mutation of calcium/calmodulin-dependent kinase (CCaMK) or the lotus histidine kinase 1 (LHK1) was decreased upon the addition of GA; moreover, the overexpression of the gain-of-function mutation of L. japonicus, SLEEPY1, a positive regulator of GA signaling, resulted in a reduced nodule number, without other aspects of root development being affected. These results indicate that higher GA signaling levels specifically inhibit the nodulation signaling pathway. Nod factor-dependent induction of NSP2 and NIN was inhibited by exogenous GA. Furthermore, the cytokinin-dependent induction of NIN was suppressed by GA. From these results, we conclude that GA inhibits the nodulation signaling pathway downstream of cytokinin, possibly at NSP2, which is required for Nod factor-dependent NIN expression. These results clarify the roles of GA in the nodulation signaling pathway, and in relation to the cytokinin signaling pathway for nodulation in L. japonicus.
Frontiers in Immunology | 2013
Florence Jacob; Saskia Vernaldi; Takaki Maekawa
In plants and animals, nucleotide-binding domain and leucine-rich repeats (NLR)-containing proteins play pivotal roles in innate immunity. Despite their similar biological functions and protein architecture, comparative genome-wide analyses of NLRs and genes encoding NLR-like proteins suggest that plant and animal NLRs have independently arisen in evolution. Furthermore, the demonstration of interfamily transfer of plant NLR functions from their original species to phylogenetically distant species implies evolutionary conservation of the underlying immune principle across plant taxonomy. In this review we discuss plant NLR evolution and summarize recent insights into plant NLR-signaling mechanisms, which might constitute evolutionarily conserved NLR-mediated immune mechanisms.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Stéphane Hacquard; Barbara Kracher; Takaki Maekawa; S. Vernaldi; Paul Schulze-Lefert; E. Ver Loren van Themaat
Significance Powdery mildew fungi are widespread plant pathogens with an obligate biotrophic lifestyle causing devastating damage to many crops. Blumeria graminis f. sp. hordei (Bgh) infects only barley and is engaged in an evolutionary arms race with the host immune system. Genome sequencing of Bgh isolates revealed an isolate-specific mosaic of monomorphic and polymorphic DNA blocks, suggesting a mechanism that provides a large standing genetic variation in virulence polymorphisms. Detailed Bgh transcriptome profiles during early pathogenesis on barley and immunocompromised Arabidopsis revealed a conserved Bgh transcriptional program despite ∼200 million years of reproductive isolation of these hosts. Barley powdery mildew, Blumeria graminis f. sp. hordei (Bgh), is an obligate biotrophic ascomycete fungal pathogen that can grow and reproduce only on living cells of wild or domesticated barley (Hordeum sp.). Domestication and deployment of resistant barley cultivars by humans selected for amplification of Bgh isolates with different virulence combinations. We sequenced the genomes of two European Bgh isolates, A6 and K1, for comparative analysis with the reference genome of isolate DH14. This revealed a mosaic genome structure consisting of large isolate-specific DNA blocks with either high or low SNP densities. Some of the highly polymorphic blocks likely accumulated SNPs for over 10,000 years, well before the domestication of barley. These isolate-specific blocks of alternating monomorphic and polymorphic regions imply an exceptionally large standing genetic variation in the Bgh population and might be generated and maintained by rare outbreeding and frequent clonal reproduction. RNA-sequencing experiments with isolates A6 and K1 during four early stages of compatible and incompatible interactions on leaves of partially immunocompromised Arabidopsis mutants revealed a conserved Bgh transcriptional program during pathogenesis compared with the natural host barley despite ∼200 million years of reproductive isolation of these hosts. Transcripts encoding candidate-secreted effector proteins are massively induced in successive waves. A specific decrease in candidate-secreted effector protein transcript abundance in the incompatible interaction follows extensive transcriptional reprogramming of the host transcriptome and coincides with the onset of localized host cell death, suggesting a host-inducible defense mechanism that targets fungal effector secretion or production.
Molecular Plant-microbe Interactions | 2008
Takaki Maekawa; Mitsumasa Kusakabe; Yoshikazu Shimoda; Shusei Sato; Satoshi Tabata; Yoshikatsu Murooka; Makoto Hayashi
In this study, we compared the transcriptional activities between Cauliflower mosaic virus (CaMV)35S promoter and polyubiquitin (Ljubq1) promoter from Lotus japonicus using beta-glucuronidase (gus) reporter gene in transgenic plants of L. japonicus. The promoter analysis demonstrated that the Ljubq1 promoter possessed higher activity than the CaMV35S promoter in leaves, stems, roots, nodules, and pollen. Finally, we created GATEWAY conversion technology-compatible binary vectors for over-expression and RNA interference under the Ljubq1 promoter. These materials could provide alternative choice for studies in L. japonicus.
The Plant Cell | 2012
Naoya Takeda; Takaki Maekawa; Makoto Hayashi
Calcium- and calmodulin-dependent protein kinase (CCaMK) is a protein kinase that is crucial for plant-microbe symbioses. This work shows the importance of nuclear localization of CCaMK for its function in plant symbiotic responses. Moreover, activation of CCaMK in the nucleus induces cytological changes similar to those important for fungal infection, without presence of the symbiotic fungi. The common symbiosis pathway is at the core of symbiosis signaling between plants and soil microbes. In this pathway, calcium- and calmodulin-dependent protein kinase (CCaMK) plays a crucial role in integrating the signals both in arbuscular mycorrhizal symbiosis (AMS) and in root nodule symbiosis (RNS). However, the molecular mechanism by which CCaMK coordinates AMS and RNS is largely unknown. Here, we report that the gain-of-function (GOF) variants of CCaMK without the regulatory domains activate both AMS and RNS signaling pathways in the absence of symbiotic partners. This activation requires nuclear localization of CCaMK. Enforced nuclear localization of the GOF-CCaMK variants by fusion with a canonical nuclear localization signal enhances signaling activity of AMS and RNS. The GOF-CCaMK variant triggers formation of a structure similar to the prepenetration apparatus, which guides infection of arbuscular mycorrhizal fungi to host root cells. In addition, the GOF-CCaMK variants without the regulatory domains partly restore AMS but fail to support rhizobial infection in ccamk mutants. These data indicate that AMS, the more ancient type of symbiosis, can be mainly regulated by the kinase activity of CCaMK, whereas RNS, which evolved more recently, requires complex regulation performed by the regulatory domains of CCaMK.