Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takako Mochizuki is active.

Publication


Featured researches published by Takako Mochizuki.


Plant and Cell Physiology | 2010

Rice Expression Atlas In Reproductive Development

Masahiro Fujita; Youko Horiuchi; Yayoi Ueda; Yoko Mizuta; Takahiko Kubo; Kentaro Yano; Shinichiro Yamaki; Katsutoshi Tsuda; Toshifumi Nagata; Mitsuru Niihama; Hirotaka Kato; Shunsuke Kikuchi; Kazuki Hamada; Takako Mochizuki; Takeshi Ishimizu; Hiroaki Iwai; Nobuhiro Tsutsumi; Nori Kurata

Gene expression throughout the reproductive process in rice (Oryza sativa) beginning with primordia development through pollination/fertilization to zygote formation was analyzed. We analyzed 25 stages/organs of rice reproductive development including early microsporogenesis stages with 57,381 probe sets, and identified around 26,000 expressed probe sets in each stage. Fine dissection of 25 reproductive stages/organs combined with detailed microarray profiling revealed dramatic, coordinated and finely tuned changes in gene expression. A decrease in expressed genes in the pollen maturation process was observed in a similar way with Arabidopsis and maize. An almost equal number of ab initio predicted genes and cloned genes which appeared or disappeared coordinated with developmental stage progression. A large number of organ-/stage-specific genes were identified; notably 2,593 probe sets for developing anther, including 932 probe sets corresponding to ab initio predicted genes. Analysis of cell cycle-related genes revealed that several cyclin-dependent kinases (CDKs), cyclins and components of SCF E3 ubiquitin ligase complexes were expressed specifically in reproductive organs. Cell wall biosynthesis or degradation protein genes and transcription factor genes expressed specifically in reproductive stages were also newly identified. Rice genes homologous to reproduction-related genes in other plants showed expression profiles both consistent and inconsistent with their predicted functions. The rice reproductive expression atlas is likely to be the most extensive and most comprehensive data set available, indispensable for unraveling functions of many specific genes in plant reproductive processes that have not yet been thoroughly analyzed.


Plant and Cell Physiology | 2011

OryzaExpress : An Integrated Database of Gene Expression Networks and Omics Annotations in Rice

Kazuki Hamada; Kohei Hongo; Keita Suwabe; Akifumi Shimizu; Taishi Nagayama; Reina Abe; Shunsuke Kikuchi; Naoki Yamamoto; Takaaki Fujii; Koji Yokoyama; Hiroko Tsuchida; Kazumi Sano; Takako Mochizuki; Nobuhiko Oki; Youko Horiuchi; Masahiro Fujita; Masao Watanabe; Makoto Matsuoka; Nori Kurata; Kentaro Yano

Similarity of gene expression profiles provides important clues for understanding the biological functions of genes, biological processes and metabolic pathways related to genes. A gene expression network (GEN) is an ideal choice to grasp such expression profile similarities among genes simultaneously. For GEN construction, the Pearson correlation coefficient (PCC) has been widely used as an index to evaluate the similarities of expression profiles for gene pairs. However, calculation of PCCs for all gene pairs requires large amounts of both time and computer resources. Based on correspondence analysis, we developed a new method for GEN construction, which takes minimal time even for large-scale expression data with general computational circumstances. Moreover, our method requires no prior parameters to remove sample redundancies in the data set. Using the new method, we constructed rice GENs from large-scale microarray data stored in a public database. We then collected and integrated various principal rice omics annotations in public and distinct databases. The integrated information contains annotations of genome, transcriptome and metabolic pathways. We thus developed the integrated database OryzaExpress for browsing GENs with an interactive and graphical viewer and principal omics annotations (http://riceball.lab.nig.ac.jp/oryzaexpress/). With integration of Arabidopsis GEN data from ATTED-II, OryzaExpress also allows us to compare GENs between rice and Arabidopsis. Thus, OryzaExpress is a comprehensive rice database that exploits powerful omics approaches from all perspectives in plant science and leads to systems biology.


DNA Research | 2013

DDBJ Read Annotation Pipeline: A Cloud Computing-Based Pipeline for High-Throughput Analysis of Next-Generation Sequencing Data

Hideki Nagasaki; Takako Mochizuki; Yuichi Kodama; Satoshi Saruhashi; Shota Morizaki; Hideaki Sugawara; Hajime Ohyanagi; Nori Kurata; Kousaku Okubo; Toshihisa Takagi; Eli Kaminuma; Yasukazu Nakamura

High-performance next-generation sequencing (NGS) technologies are advancing genomics and molecular biological research. However, the immense amount of sequence data requires computational skills and suitable hardware resources that are a challenge to molecular biologists. The DNA Data Bank of Japan (DDBJ) of the National Institute of Genetics (NIG) has initiated a cloud computing-based analytical pipeline, the DDBJ Read Annotation Pipeline (DDBJ Pipeline), for a high-throughput annotation of NGS reads. The DDBJ Pipeline offers a user-friendly graphical web interface and processes massive NGS datasets using decentralized processing by NIG supercomputers currently free of charge. The proposed pipeline consists of two analysis components: basic analysis for reference genome mapping and de novo assembly and subsequent high-level analysis of structural and functional annotations. Users may smoothly switch between the two components in the pipeline, facilitating web-based operations on a supercomputer for high-throughput data analysis. Moreover, public NGS reads of the DDBJ Sequence Read Archive located on the same supercomputer can be imported into the pipeline through the input of only an accession number. This proposed pipeline will facilitate research by utilizing unified analytical workflows applied to the NGS data. The DDBJ Pipeline is accessible at http://p.ddbj.nig.ac.jp/.


Plant and Cell Physiology | 2016

OryzaGenome: Genome Diversity Database of Wild Oryza Species

Hajime Ohyanagi; Toshinobu Ebata; Xuehui Huang; Hao Gong; Masahiro Fujita; Takako Mochizuki; Atsushi Toyoda; Asao Fujiyama; Eli Kaminuma; Yasukazu Nakamura; Qi Feng; Zi-Xuan Wang; Bin Han; Nori Kurata

The species in the genus Oryza, encompassing nine genome types and 23 species, are a rich genetic resource and may have applications in deeper genomic analyses aiming to understand the evolution of plant genomes. With the advancement of next-generation sequencing (NGS) technology, a flood of Oryza species reference genomes and genomic variation information has become available in recent years. This genomic information, combined with the comprehensive phenotypic information that we are accumulating in our Oryzabase, can serve as an excellent genotype–phenotype association resource for analyzing rice functional and structural evolution, and the associated diversity of the Oryza genus. Here we integrate our previous and future phenotypic/habitat information and newly determined genotype information into a united repository, named OryzaGenome, providing the variant information with hyperlinks to Oryzabase. The current version of OryzaGenome includes genotype information of 446 O. rufipogon accessions derived by imputation and of 17 accessions derived by imputation-free deep sequencing. Two variant viewers are implemented: SNP Viewer as a conventional genome browser interface and Variant Table as a text-based browser for precise inspection of each variant one by one. Portable VCF (variant call format) file or tab-delimited file download is also available. Following these SNP (single nucleotide polymorphism) data, reference pseudomolecules/scaffolds/contigs and genome-wide variation information for almost all of the closely and distantly related wild Oryza species from the NIG Wild Rice Collection will be available in future releases. All of the resources can be accessed through http://viewer.shigen.info/oryzagenome/.


PLOS ONE | 2016

Hybrid Origins of Citrus Varieties Inferred from DNA Marker Analysis of Nuclear and Organelle Genomes

Tokurou Shimizu; Akira Kitajima; Keisuke Nonaka; Terutaka Yoshioka; Satoshi Ohta; Shingo Goto; Atsushi Toyoda; Asao Fujiyama; Takako Mochizuki; Hideki Nagasaki; Eli Kaminuma; Yasukazu Nakamura

Most indigenous citrus varieties are assumed to be natural hybrids, but their parentage has so far been determined in only a few cases because of their wide genetic diversity and the low transferability of DNA markers. Here we infer the parentage of indigenous citrus varieties using simple sequence repeat and indel markers developed from various citrus genome sequence resources. Parentage tests with 122 known hybrids using the selected DNA markers certify their transferability among those hybrids. Identity tests confirm that most variant strains are selected mutants, but we find four types of kunenbo (Citrus nobilis) and three types of tachibana (Citrus tachibana) for which we suggest different origins. Structure analysis with DNA markers that are in Hardy–Weinberg equilibrium deduce three basic taxa coinciding with the current understanding of citrus ancestors. Genotyping analysis of 101 indigenous citrus varieties with 123 selected DNA markers infers the parentages of 22 indigenous citrus varieties including Satsuma, Temple, and iyo, and single parents of 45 indigenous citrus varieties, including kunenbo, C. ichangensis, and Ichang lemon by allele-sharing and parentage tests. Genotyping analysis of chloroplast and mitochondrial genomes using 11 DNA markers classifies their cytoplasmic genotypes into 18 categories and deduces the combination of seed and pollen parents. Likelihood ratio analysis verifies the inferred parentages with significant scores. The reconstructed genealogy identifies 12 types of varieties consisting of Kishu, kunenbo, yuzu, koji, sour orange, dancy, kobeni mikan, sweet orange, tachibana, Cleopatra, willowleaf mandarin, and pummelo, which have played pivotal roles in the occurrence of these indigenous varieties. The inferred parentage of the indigenous varieties confirms their hybrid origins, as found by recent studies.


Genome Announcements | 2014

Draft Genome Sequence of Weissella oryzae SG25T, Isolated from Fermented Rice Grains

Yasuhiro Tanizawa; Takatomo Fujisawa; Takako Mochizuki; Eli Kaminuma; Yutaka Suzuki; Yasukazu Nakamura; Masanori Tohno

ABSTRACT Weissella oryzae was originally isolated from fermented rice grains. Here we report the draft genome sequence of the type strain of W. oryzae. This first report on the genomic sequence of this species may help identify the mechanisms underlying bacterial adaptation to the ecological niche of fermented rice grains.


Frontiers in Genetics | 2017

Draft Sequencing of the Heterozygous Diploid Genome of Satsuma (Citrus unshiu Marc.) Using a Hybrid Assembly Approach

Tokurou Shimizu; Yasuhiro Tanizawa; Takako Mochizuki; Hideki Nagasaki; Terutaka Yoshioka; Atsushi Toyoda; Asao Fujiyama; Eli Kaminuma; Yasukazu Nakamura

Satsuma (Citrus unshiu Marc.) is one of the most abundantly produced mandarin varieties of citrus, known for its seedless fruit production and as a breeding parent of citrus. De novo assembly of the heterozygous diploid genome of Satsuma (“Miyagawa Wase”) was conducted by a hybrid assembly approach using short-read sequences, three mate-pair libraries, and a long-read sequence of PacBio by the PLATANUS assembler. The assembled sequence, with a total size of 359.7 Mb at the N50 length of 386,404 bp, consisted of 20,876 scaffolds. Pseudomolecules of Satsuma constructed by aligning the scaffolds to three genetic maps showed genome-wide synteny to the genomes of Clementine, pummelo, and sweet orange. Gene prediction by modeling with MAKER-P proposed 29,024 genes and 37,970 mRNA; additionally, gene prediction analysis found candidates for novel genes in several biosynthesis pathways for gibberellin and violaxanthin catabolism. BUSCO scores for the assembled scaffold and predicted transcripts, and another analysis by BAC end sequence mapping indicated the assembled genome consistency was close to those of the haploid Clementine, pummel, and sweet orange genomes. The number of repeat elements and long terminal repeat retrotransposon were comparable to those of the seven citrus genomes; this suggested no significant failure in the assembly at the repeat region. A resequencing application using the assembled sequence confirmed that both kunenbo-A and Satsuma are offsprings of Kishu, and Satsuma is a back-crossed offspring of Kishu. These results illustrated the performance of the hybrid assembly approach and its ability to construct an accurate heterozygous diploid genome.


Genome Announcements | 2014

Draft Genome Sequence of Lactobacillus oryzae Strain SG293T

Yasuhiro Tanizawa; Takatomo Fujisawa; Takako Mochizuki; Eli Kaminuma; Yasukazu Nakamura; Masanori Tohno

ABSTRACT We report the 1.86-Mb draft genome and annotation of Lactobacillus oryzae SG293T isolated from fermented rice grains. This genome information may provide further insights into the mechanisms underlying the fermentation of rice grains.


BMC Genomics | 2010

A simple optimization can improve the performance of single feature polymorphism detection by Affymetrix expression arrays

Youko Horiuchi; Yoshiaki Harushima; Hironori Fujisawa; Takako Mochizuki; Masanori Kawakita; Takayuki Sakaguchi; Nori Kurata

BackgroundHigh-density oligonucleotide arrays are effective tools for genotyping numerous loci simultaneously. In small genome species (genome size: < ~300 Mb), whole-genome DNA hybridization to expression arrays has been used for various applications. In large genome species, transcript hybridization to expression arrays has been used for genotyping. Although rice is a fully sequenced model plant of medium genome size (~400 Mb), there are a few examples of the use of rice oligonucleotide array as a genotyping tool.ResultsWe compared the single feature polymorphism (SFP) detection performance of whole-genome and transcript hybridizations using the Affymetrix GeneChip® Rice Genome Array, using the rice cultivars with full genome sequence, japonica cultivar Nipponbare and indica cultivar 93-11. Both genomes were surveyed for all probe target sequences. Only completely matched 25-mer single copy probes of the Nipponbare genome were extracted, and SFPs between them and 93-11 sequences were predicted. We investigated optimum conditions for SFP detection in both whole genome and transcript hybridization using differences between perfect match and mismatch probe intensities of non-polymorphic targets, assuming that these differences are representative of those between mismatch and perfect targets. Several statistical methods of SFP detection by whole-genome hybridization were compared under the optimized conditions. Causes of false positives and negatives in SFP detection in both types of hybridization were investigated.ConclusionsThe optimizations allowed a more than 20% increase in true SFP detection in whole-genome hybridization and a large improvement of SFP detection performance in transcript hybridization. Significance analysis of the microarray for log-transformed raw intensities of PM probes gave the best performance in whole genome hybridization, and 22,936 true SFPs were detected with 23.58% false positives by whole genome hybridization. For transcript hybridization, stable SFP detection was achieved for highly expressed genes, and about 3,500 SFPs were detected at a high sensitivity (> 50%) in both shoot and young panicle transcripts. High SFP detection performances of both genome and transcript hybridizations indicated that microarrays of a complex genome (e.g., of Oryza sativa) can be effectively utilized for whole genome genotyping to conduct mutant mapping and analysis of quantitative traits such as gene expression levels.


PLOS ONE | 2017

DNApod: DNA polymorphism annotation database from next-generation sequence read archives

Takako Mochizuki; Yasuhiro Tanizawa; Takatomo Fujisawa; Tazro Ohta; Naruo Nikoh; Tokurou Shimizu; Atsushi Toyoda; Asao Fujiyama; Nori Kurata; Hideki Nagasaki; Eli Kaminuma; Yasukazu Nakamura; Hikmet Budak

With the rapid advances in next-generation sequencing (NGS), datasets for DNA polymorphisms among various species and strains have been produced, stored, and distributed. However, reliability varies among these datasets because the experimental and analytical conditions used differ among assays. Furthermore, such datasets have been frequently distributed from the websites of individual sequencing projects. It is desirable to integrate DNA polymorphism data into one database featuring uniform quality control that is distributed from a single platform at a single place. DNA polymorphism annotation database (DNApod; http://tga.nig.ac.jp/dnapod/) is an integrated database that stores genome-wide DNA polymorphism datasets acquired under uniform analytical conditions, and this includes uniformity in the quality of the raw data, the reference genome version, and evaluation algorithms. DNApod genotypic data are re-analyzed whole-genome shotgun datasets extracted from sequence read archives, and DNApod distributes genome-wide DNA polymorphism datasets and known-gene annotations for each DNA polymorphism. This new database was developed for storing genome-wide DNA polymorphism datasets of plants, with crops being the first priority. Here, we describe our analyzed data for 679, 404, and 66 strains of rice, maize, and sorghum, respectively. The analytical methods are available as a DNApod workflow in an NGS annotation system of the DNA Data Bank of Japan and a virtual machine image. Furthermore, DNApod provides tables of links of identifiers between DNApod genotypic data and public phenotypic data. To advance the sharing of organism knowledge, DNApod offers basic and ubiquitous functions for multiple alignment and phylogenetic tree construction by using orthologous gene information.

Collaboration


Dive into the Takako Mochizuki's collaboration.

Top Co-Authors

Avatar

Nori Kurata

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar

Eli Kaminuma

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar

Yasukazu Nakamura

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar

Youko Horiuchi

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar

Asao Fujiyama

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar

Atsushi Toyoda

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar

Hideki Nagasaki

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar

Masahiro Fujita

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hajime Ohyanagi

King Abdullah University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge