Takamasa Tsuzuki
Juntendo University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Takamasa Tsuzuki.
PLOS ONE | 2015
Takamasa Tsuzuki; Shohei Shinozaki; Hideko Nakamoto; Masao Kaneki; Sataro Goto; Kentaro Shimokado; Hiroyuki Kobayashi; Hisashi Naito
Voluntary exercise can ameliorate insulin resistance. The underlying mechanism, however, remains to be elucidated. We previously demonstrated that inducible nitric oxide synthase (iNOS) in the liver plays an important role in hepatic insulin resistance in the setting of obesity. In this study, we tried to verify our hypothesis that voluntary exercise improves insulin resistance by reducing the expression of iNOS and subsequent S-nitrosylation of key molecules of glucose metabolism in the liver. Twenty-one Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a model of type 2 diabetes mellitus, and 18 non-diabetic control Long-Evans Tokushima Otsuka (LETO) rats were randomly assigned to a sedentary group or exercise group subjected to voluntary wheel running for 20 weeks. The voluntary exercise significantly reduced the fasting blood glucose and HOMA-IR in the OLETF rats. In addition, the exercise decreased the amount of iNOS mRNA in the liver in the OLETF rats. Moreover, exercise reduced the levels of S-nitrosylated Akt in the liver, which were increased in the OLETF rats, to those observed in the LETO rats. These findings support our hypothesis that voluntary exercise improves insulin resistance, at least partly, by suppressing the iNOS expression and subsequent S-nitrosylation of Akt, a key molecule of the signal transduction pathways in glucose metabolism in the liver.
PLOS Genetics | 2017
Ayako Fukunaka; Toshiyuki Fukada; Jinhyuk Bhin; Luka Suzuki; Takamasa Tsuzuki; Yuri Takamine; Bum-Ho Bin; Toshinori Yoshihara; Noriko Ichinoseki-Sekine; Hisashi Naito; Takeshi Miyatsuka; Shinzaburo Takamiya; Tsutomu Sasaki; Takeshi Inagaki; Tadahiro Kitamura; Shingo Kajimura; Hirotaka Watada; Yoshio Fujitani
Given the relevance of beige adipocytes in adult humans, a better understanding of the molecular circuits involved in beige adipocyte biogenesis has provided new insight into human brown adipocyte biology. Genetic mutations in SLC39A13/ZIP13, a member of zinc transporter family, are known to reduce adipose tissue mass in humans; however, the underlying mechanisms remains unknown. Here, we demonstrate that the Zip13-deficient mouse shows enhanced beige adipocyte biogenesis and energy expenditure, and shows ameliorated diet-induced obesity and insulin resistance. Both gain- and loss-of-function studies showed that an accumulation of the CCAAT/enhancer binding protein-β (C/EBP-β) protein, which cooperates with dominant transcriptional co-regulator PR domain containing 16 (PRDM16) to determine brown/beige adipocyte lineage, is essential for the enhanced adipocyte browning caused by the loss of ZIP13. Furthermore, ZIP13-mediated zinc transport is a prerequisite for degrading the C/EBP-β protein to inhibit adipocyte browning. Thus, our data reveal an unexpected association between zinc homeostasis and beige adipocyte biogenesis, which may contribute significantly to the development of new therapies for obesity and metabolic syndrome.
Journal of Applied Physiology | 2015
Toshinori Yoshihara; Noriko Ichinoseki-Sekine; Ryo Kakigi; Takamasa Tsuzuki; Takao Sugiura; Scott K. Powers; Hisashi Naito
Controlled mechanical ventilation (CMV) is a life-saving intervention for patients in respiratory failure. Unfortunately, prolonged mechanical ventilation (MV) results in diaphragmatic atrophy and contractile dysfunction, both of which are predicted to contribute to problems in weaning patients from the ventilator. Therefore, developing a strategy to protect the diaphragm against ventilator-induced weakness is important. We tested the hypothesis that repeated bouts of heat stress result in diaphragm resistance against CMV-induced atrophy and contractile dysfunction. Male Wistar rats were randomly divided into six experimental groups: 1) control; 2) single bout of whole body heat stress; 3) repeated bouts of whole body heat stress; 4) 12 h CMV; 5) single bout of whole body heat stress 24 h before CMV; and 6) repeated bouts of whole body heat stress 1, 3, and 5 days before 12 h of CMV. Our results revealed that repeated bouts of heat stress resulted in increased levels of heat shock protein 72 in the diaphragm and protection against both CMV-induced diaphragmatic atrophy and contractile dysfunction at submaximal stimulation frequencies. The specific mechanisms responsible for this protection remain unclear: this heat stress-induced protection against CMV-induced diaphragmatic atrophy and weakness may be partially due to reduced diaphragmatic oxidative stress, diminished activation of signal transducer/transcriptional activator-3, lower caspase-3 activation, and decreased autophagy in the diaphragm.
PLOS ONE | 2018
Takamasa Tsuzuki; Toshinori Yoshihara; Noriko Ichinoseki-Sekine; Ryo Kakigi; Yuri Takamine; Hiroyuki Kobayashi; Hisashi Naito
This study examined the effect of changes in body temperature during exercise on signal transduction-related glucose uptake in the skeletal muscle of type 2 diabetic rats. Otsuka Long-Evans Tokushima Fatty rats (25 weeks of age), which have type 2 diabetes, were divided into the following four weight-matched groups; control (CON, n = 6), exercised under warm temperature (WEx, n = 8), exercised under cold temperature (CEx, n = 8), and heat treatment (HT, n = 6). WEx and CEx animals were subjected to running on a treadmill at 20 m/min for 30 min under warm (25°C) or cold (4°C) temperature. HT animals were exposed to single heat treatment (40–41°C for 30 min) in a heat chamber. Rectal and muscle temperatures were measured immediately after exercise and heat treatment, and the gastrocnemius muscle was sampled under anesthesia. Rectal and muscle temperatures increased significantly in rats in the WEx and HT, but not the CEx, groups. The phosphorylation levels of Akt, AS160, and TBC1D1 (Thr590) were significantly higher in the WEx and HT groups than the CON group (p < 0.05). In contrast, the phosphorylation levels of AMP-activated protein kinase, ACC, and TBC1D1 (Ser660) were significantly higher in rats in the WEx and CEx groups than the CON group (p < 0.05) but did not differ significantly between rats in the WEx and CEx groups. Body temperature elevation by heat treatment did not activate the AMPK signaling. Our data suggest that body temperature elevation during exercise is essential for activating the Akt signaling pathway in the skeletal muscle of rats with type 2 diabetic rats.
PLOS ONE | 2018
Yuri Takamine; Noriko Ichinoseki-Sekine; Takamasa Tsuzuki; Toshinori Yoshihara; Hisashi Naito
The incidence of obesity in children and adolescents, which may lead to type 2 diabetes, is increasing. Exercise is recommended to prevent and improve diabetes. However, little is known about the bone marrow environment at the onset of diabetes in the young, and it is unclear whether exercise training is useful for maintaining bone homeostasis, such as mechanical and histological properties. Thus, this study clarified the histological properties of bone and whether exercise contributes to maintaining bone homeostasis at the onset of type 2 diabetes in rats. Four-week-old male Otsuka Long-Evans Tokushima Fatty (OLETF; n = 21) rats as a diabetic model and Long-Evans Tokushima Otsuka (LETO; n = 18) rats as a control were assigned randomly to four groups: the OLETF sedentary group (O-Sed; n = 11), OLETF exercise group (O-Ex; n = 10), LETO sedentary group (L-Sed; n = 9), and LETO exercise group (L-Ex; n = 9). All rats in the exercise group were allowed free access to a steel running wheel for 20 weeks (5–25 weeks of age). In the glucose tolerance test, blood glucose level was higher in the O-Sed group than that in the L-Sed and L-Ex groups, and was markedly suppressed by the voluntary running exercise of O-Ex rats. The energy to fracture and the two-dimensional bone volume at 25 weeks of age did not differ significantly among the groups, though the maximum breaking force and stiffness were lower in OLETF rats. However, bone marrow fat volume was greater in O-Sed than that in L-Sed and L-Ex rats, and was markedly suppressed by wheel running in the O-Ex rats. Our results indicate that exercise has beneficial effects not only for preventing diabetes but also on normal bone remodeling at an early age.
Journal of Applied Physiology | 2018
Hiroshi Kumagai; Takuro Tobina; Noriko Ichinoseki-Sekine; Ryo Kakigi; Takamasa Tsuzuki; Hirofumi Zempo; Keisuke Shiose; Eiichi Yoshimura; Hideaki Kumahara; Makoto Ayabe; Yasuki Higaki; Ryo Yamada; Hiroyuki Kobayashi; Akira Kiyonaga; Hisashi Naito; Noriyuki Fuku
Genetic polymorphisms and sex differences are suggested to affect muscle fiber composition; however, no study has investigated the effects of genetic polymorphisms on muscle fiber composition with respect to sex differences. Therefore, the present study examined the effects of genetic polymorphisms on muscle fiber composition with respect to sex differences in the Japanese population. The present study included 211 healthy Japanese individuals (102 men and 109 women). Muscle biopsies were obtained from the vastus lateralis to determine the proportion of myosin heavy chain (MHC) isoforms (MHC-I, MHC-IIa, and MHC-IIx). Moreover, we analyzed polymorphisms in α-actinin-3 gene (ACTN3; rs1815739), angiotensin-converting enzyme gene (ACE; rs4341), hypoxia-inducible factor 1 α gene (rs11549465), vascular endothelial growth factor receptor 2 gene (rs1870377), and angiotensin II receptor, type 2 gene (rs11091046), by TaqMan single-nucleotide polymorphism genotyping assays. The proportion of MHC-I was 9.8% lower in men than in women, whereas the proportion of MHC-IIa and MHC-IIx was higher in men than in women (5.0 and 4.6%, respectively). Men with the ACTN3 RR + RX genotype had a 4.8% higher proportion of MHC-IIx than those with the ACTN3 XX genotype. Moreover, men with the ACE ID + DD genotype had a 4.7% higher proportion of MHC-I than those with the ACE II genotype. Furthermore, a combined genotype of ACTN3 R577X and ACE insertion/deletion (I/D) was significantly correlated with the proportion of MHC-I (r = −0.23) and MHC-IIx (r = 0.27) in men. In contrast, no significant correlation was observed between the examined polymorphisms and muscle fiber composition in women. These results suggest that the ACTN3 R577X and ACE I/D polymorphisms independently affect the proportion of human skeletal muscle fibers MHC-I and MHC-IIx in men but not in women. NEW & NOTEWORTHY In men, the RR + RX genotype of the α-actinin-3 gene (ACTN3) R577X polymorphism was associated with a higher proportion of myosin heavy chain (MHC)-IIx. The ID + DD genotype of the angiotensin-converting enzyme gene (ACE) insertion/deletion (I/D) polymorphism, in contrast to a previous finding, was associated with a higher proportion of MHC-I in men. In addition, the combined genotype of these polymorphisms was correlated with the proportion of MHC-I and MHC-IIx in men. Thus ACTN3 R577X and ACE I/D polymorphisms influence the muscle fiber composition in Japanese men.
The Journal of Physical Fitness and Sports Medicine | 2012
Hisashi Naito; Toshinori Yoshihara; Ryo Kakigi; Noriko Ichinoseki-Sekine; Takamasa Tsuzuki
Cell Stress & Chaperones | 2017
Takamasa Tsuzuki; Hiroyuki Kobayashi; Toshinori Yoshihara; Ryo Kakigi; Noriko Ichinoseki-Sekine; Hisashi Naito
The FASEB Journal | 2015
Toshinori Yoshihara; Shuichi Machida; Yuka Kurosaka; Ryo Kakigi; Noriko Ichinoseki-Sekine; Takamasa Tsuzuki; Yuri Takamine; Takao Sugiura; Hisashi Naito
The FASEB Journal | 2015
Takamasa Tsuzuki; Hideko Nakamoto; Hiroyuki Kobayashi; Sataro Goto; Noriko Ichinoseki-Sekine; Hisashi Naito