Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takamitsu Makino is active.

Publication


Featured researches published by Takamitsu Makino.


Journal of Immunology | 2012

Impaired IL-17 Signaling Pathway Contributes to the Increased Collagen Expression in Scleroderma Fibroblasts

Taiji Nakashima; Masatoshi Jinnin; Keitaro Yamane; Noritoshi Honda; Ikko Kajihara; Takamitsu Makino; Shinichi Masuguchi; Satoshi Fukushima; Yoshinobu Okamoto; Minoru Hasegawa; Manabu Fujimoto; Hironobu Ihn

Among IL-17 families, IL-17A and IL-17F share amino acid sequence similarity and bind to IL-17R type A. IL-17 signaling is implicated in the pathogenesis of various autoimmune diseases, but its role in the regulatory mechanism of extracellular matrix expression and its contribution to the phenotype of systemic sclerosis (SSc) both remain to be elucidated. This study revealed that IL-17A expression was significantly increased in the involved skin and sera of SSc patients, whereas the IL-17F levels did not increase. In contrast, the expression of IL-17R type A in SSc fibroblasts significantly decreased in comparison with that in normal fibroblasts, due to the intrinsic TGF-β1 activation in these cell types. Moreover, IL-17A, not IL-17F, reduced the protein expression of α1(I) collagen and connective tissue growth factor. miR-129-5p, one of the downregulated microRNAs in SSc fibroblasts, increased due to IL-17A and mediated the α1(I) collagen reduction. These results suggest that IL-17A signaling, not IL-17F, has an antifibrogenic effect via the upregulation of miR-129-5p and the downregulation of connective tissue growth factor and α1(I) collagen. IL-17A signaling is suppressed due to the downregulation of the receptor by the intrinsic activation of TGF-β1 in SSc fibroblasts, which may amplify the increased collagen accumulation and fibrosis characteristic of SSc. Increased IL-17A levels in the sera and involved skin of SSc may be due to negative feedback. Clarifying the novel regulatory mechanisms of fibrosis by the cytokine network consisting of TGF-β and IL-17A may lead to a new therapeutic approach for this disease.


Journal of Immunology | 2012

TGF-β–Mediated Downregulation of MicroRNA-196a Contributes to the Constitutive Upregulated Type I Collagen Expression in Scleroderma Dermal Fibroblasts

Noritoshi Honda; Masatoshi Jinnin; Ikko Kajihara; Takamitsu Makino; Katsunari Makino; Shinichi Masuguchi; Satoshi Fukushima; Yoshinobu Okamoto; Minoru Hasegawa; Manabu Fujimoto; Hironobu Ihn

Previous reports indicated the significance of the TGF-β signaling in the pathogenesis of systemic sclerosis. We tried to evaluate the possibility that microRNAs (miRNAs) play a part in the type I collagen upregulation seen in normal fibroblasts stimulated with exogenous TGF-β and systemic sclerosis (SSc) fibroblasts. miRNA expression profile was evaluated by miRNA PCR array and real-time PCR. The protein expression of type I collagen was determined by immunoblotting. In vivo detection of miRNA in paraffin section was performed by in situ hybridization. Several miRNAs were found to be downregulated in both TGF-β–stimulated normal fibroblasts and SSc fibroblasts compared with normal fibroblasts by PCR array. Among them, miR-196a expression was decreased in SSc both in vivo and in vitro by real-time PCR or in situ hybridization. In SSc fibroblasts, miR-196a expression was normalized by TGF-β small interfering RNA. miR-196a inhibitor leads to the overexpression of type I collagen in normal fibroblasts, whereas overexpression of the miRNA resulted in the downregulation of type I collagen in SSc fibroblasts. In addition, miR-196a was detectable and quantitative in the serum of SSc patients. Patients with lower serum miR-196a levels had significantly higher ratio of diffuse cutaneous SSc:limited cutaneous SSc, higher modified Rodnan total skin thickness score, and higher prevalence of pitting scars than those without. miR-196a may play some roles in the pathogenesis of SSc. Investigation of the regulatory mechanisms of type I collagen expression by miR-196a may lead to new treatments using miRNA.


Arthritis Research & Therapy | 2010

Characterization of monocyte/macrophage subsets in the skin and peripheral blood derived from patients with systemic sclerosis

Nobuyo Higashi-Kuwata; Masatoshi Jinnin; Takamitsu Makino; Satoshi Fukushima; Yuji Inoue; Faith C. Muchemwa; Yuji Yonemura; Yoshihiro Komohara; Motohiro Takeya; Hiroaki Mitsuya; Hironobu Ihn

IntroductionRecent accumulating evidence indicates a crucial involvement of macrophage lineage in the pathogenesis of systemic sclerosis (SSc). To analyze the assembly of the monocyte/macrophage population, we evaluated the expression of CD163 and CD204 and various activated macrophage markers, in the inflammatory cells of the skin and in the peripheral blood mononuclear cells (PBMCs) derived from patients with SSc.MethodsSkin biopsy specimens from 6 healthy controls and 10 SSc patients (7 limited cutaneous SSc and 3 diffuse cutaneous SSc) were analyzed by immunohistochemistry using monoclonal antibody against CD68 (pan-macrophage marker), CD163 and CD204. Surface and/or intracellular protein expression of CD14 (marker for monocyte lineage), CD163 and CD204 was analysed by flow cytometry in PBMCs from 16 healthy controls and 41 SSc patients (26 limited cutaneous SSc and 15 diffuse cutaneous SSc). Statistical analysis was carried out using Mann-Whitney U test for comparison of means.ResultsIn the skin from SSc patients, the number of CD163+ cells or CD204+ cells between the collagen fibers was significantly larger than that in healthy controls. Flow cytometry showed that the population of CD14+ cells was significantly greater in PBMCs from SSc patients than that in healthy controls. Further analysis of CD14+ cells in SSc patients revealed higher expression of CD163 and the presence of two unique peaks in the CD204 histogram. Additionally, we found that the CD163+ cells belong to CD14brightCD204+ population.ConclusionsThis is the first report indicating CD163+ or CD204+ activated macrophages may be one of the potential fibrogenic regulators in the SSc skin. Furthermore, this study suggests a portion of PBMCs in SSc patients abnormally differentiates into CD14brightCD163+CD204+ subset. The subset specific to SSc may play an important role in the pathogenesis of this disease, as the source of CD163+ or CD204+ macrophages in the skin.


Journal of Immunology | 2013

The Downregulation of microRNA let-7a Contributes to the Excessive Expression of Type I Collagen in Systemic and Localized Scleroderma

Katsunari Makino; Masatoshi Jinnin; Ayaka Hirano; Keitaro Yamane; Mitsuhiko Eto; Takamitsu Kusano; Noritoshi Honda; Ikko Kajihara; Takamitsu Makino; Keisuke Sakai; Shinichi Masuguchi; Satoshi Fukushima; Hironobu Ihn

Systemic and localized scleroderma (SSc and LSc) is characterized by excessive deposition of collagen and tissue fibrosis in the skin. Although they have fundamental common characteristics including autoimmunity, little is known about the exact mechanism that mediates the excessive collagen expression in these disorders. In the current study, we tried to evaluate the possibility that microRNAs (miRNAs) play some roles in the pathogenesis of fibrosis seen in these diseases. miRNA expression patterns were evaluated by miRNA array analysis, real-time PCR, and in situ hybridization. The function of miRNAs in dermal fibroblasts was assessed using miRNA inhibitors, precursors, or protectors. In the mouse model of bleomycin-induced dermal sclerosis, the overexpression of miRNAs was performed by i.p. miRNA injection. We demonstrated let-7a expression was downregulated in SSc and LSc skin both in vivo and in vitro, compared with normal or keloid skin. The inhibition or overexpression of let-7a in human or mouse skin fibroblasts affected the protein expression of type I collagen or luciferase activity of collagen 3′-untranslated region. Also, we found let-7a was detectable and quantitative in the serum and investigated serum let-7a levels in patients with SSc or LSc. let-7a concentration was significantly decreased in these patients, especially in LSc patients. Moreover, we revealed that the intermittent overexpression of let-7a in the skin by i.p. miRNA injection improved the skin fibrosis induced by bleomycin in mice. Investigation of more detailed mechanisms of miRNA-mediated regulation of collagen expression may lead to new therapeutic approaches against SSc and LSc.


Rheumatology | 2012

microRNA-92a expression in the sera and dermal fibroblasts increases in patients with scleroderma

Takaomi Sing; Masatoshi Jinnin; Keitaro Yamane; Norihito Honda; Kastunari Makino; Ikko Kajihara; Takamitsu Makino; Keisuke Sakai; Shinichi Masuguchi; Satoshi Fukushima; Hironobu Ihn

OBJECTIVES microRNAs (miRNAs) play a part in various cellular activities. However, the role of miRNA in SSc is not fully understood. This study investigated the expression and role of miR-92a in SSc patients and evaluated the possibility that miR-92a is involved in the pathogenesis of this disease. METHODS Serum samples were obtained from 61 SSc patients. mRNAs were purified from serum and levels of miR-92a and miR-135 were measured with quantitative real-time PCR. miR-92a expression in dermal fibroblasts was also determined by quantitative real-time PCR. Immunoblotting was performed to detect MMP-1 protein. RESULTS The median serum levels of miR-92a, not miR-135, were significantly higher in SSc patients than normal subjects. The constitutive up-regulated miR-92a expression was also found in cultured dermal fibroblasts from SSc skin, which was decreased by the transfection with siRNA of TGF-β. Furthermore, the forced overexpression of miR-92a in normal dermal fibroblasts using miR-92a mimic resulted in the down-regulation of MMP-1 expression. CONCLUSION The increase of miR-92a in SSc may be due to the stimulation of intrinsic TGF-β activation seen in this disease. There is also a possibility that MMP-1 is the target of miR-92a and that increased miR-92a expression therefore plays a role in excessive collagen accumulation in SSc via the down-regulation of MMP-1. Clarifying the role of miRNAs in SSc may result in a better understanding of this disease and the development of new therapeutic approaches.


British Journal of Dermatology | 2009

Basic fibroblast growth factor stimulates the proliferation of human dermal fibroblasts via the ERK1/2 and JNK pathways.

Takamitsu Makino; Masatoshi Jinnin; Faith C. Muchemwa; Satoshi Fukushima; H. Kogushi‐Nishi; Chikako Moriya; Toshikatsu Igata; Akihiko Fujisawa; Takamitsu Johno; Hironobu Ihn

Background  Basic fibroblast growth factor (bFGF, FGF‐2) has been described as a multipotent cytokine that regulates cell growth as well as differentiation, matrix composition, chemotaxis, cell adhesion and migration in numerous cell types. It is known that bFGF stimulates proliferation of cultured fibroblasts. However, the detailed mechanism of fibroblast proliferation induced by bFGF in vitro still remains to be elucidated.


Experimental Dermatology | 2009

Alternatively activated macrophages (M2 macrophages) in the skin of patient with localized scleroderma

Nobuyo Higashi-Kuwata; Takamitsu Makino; Yuji Inoue; Motohiro Takeya; Hironobu Ihn

Abstract:  Localized scleroderma is a connective tissue disorder that is limited to the skin and subcutaneous tissue. Macrophages have been reported to be particularly activated in patients with skin disease including systemic sclerosis and are potentially important sources for fibrosis‐inducing cytokines, such as transforming growth factor β. To clarify the features of immunohistochemical characterization of the immune cell infiltrates in localized scleroderma focusing on macrophages, skin biopsy specimens were analysed by immunohistochemistry. The number of cells stained with monoclonal antibodies, CD68, CD163 and CD204, was calculated. An evident macrophage infiltrate and increased number of alternatively activated macrophages (M2 macrophages) in their fibrotic areas were observed along with their severity of inflammation. This study revealed that alternatively activated macrophages (M2 macrophages) may be a potential source of fibrosis‐inducing cytokines in localized scleroderma, and may play a crucial role in the pathogenesis of localized scleroderma.


Archives of Dermatological Research | 2013

microRNA-7 down-regulation mediates excessive collagen expression in localized scleroderma.

Mitsuhiko Etoh; Masatoshi Jinnin; Katsunari Makino; Keitaro Yamane; Wakana Nakayama; Jun Aoi; Noritoshi Honda; Ikko Kajihara; Takamitsu Makino; Satoshi Fukushima; Hironobu Ihn

Localized scleroderma (LSc), a connective tissue disorder restricted to the skin and subcutaneous tissue, is characterized by skin fibrosis due to an excessive deposition of types I collagen. The mechanism of such fibrosis is still unknown, but epigenetics may play some roles in the excessive collagen expression. In the present study, we investigated the mechanism of fibrosis seen in LSc, focusing on microRNA (miRNA). miRNA expression was determined by PCR array, real-time PCR, and in situ hybridization. The function of miRNA was evaluated using specific inhibitor. Immunoblotting was performed to detect α2(I) collagen protein. PCR array analysis using tissue miRNA demonstrated miR-7 level was significantly decreased in LSc skin as well as keloid tissue compared to normal skin in vivo. In situ hybridization also showed miR-7 expression in dermal fibroblasts was decreased in LSc dermis. The transfection of specific inhibitor for miR-7 into cultured normal dermal fibroblasts resulted in the up-regulation of α2(I) collagen protein in vitro. Also, the serum levels of miR-7 were significantly decreased in LSc patients compared with healthy controls, but serum miR-29a levels not. Systemic or local down-regulation of miR-7 may contribute to the pathogenesis of LSc via the overexpression of α2(I) collagen, and serum miR-7 may be useful as a disease marker. Investigation of the regulatory mechanisms of LSc by miRNA may lead to new treatments by the transfection into the lesional skin of this disease.


American Journal of Pathology | 2012

Increased accumulation of extracellular thrombospondin-2 due to low degradation activity stimulates type i collagen expression in scleroderma fibroblasts

Ikko Kajihara; Masatoshi Jinnin; Keitaro Yamane; Takamitsu Makino; Noritoshi Honda; Toshikatsu Igata; Shinichi Masuguchi; Satoshi Fukushima; Yoshinobu Okamoto; Minoru Hasegawa; Manabu Fujimoto; Hironobu Ihn

The aim of the present study was to determine the expression and role of thrombospondin-2 (TSP-2) in systemic sclerosis (SSc). Both TSP-2 mRNA levels and protein synthesis in cell lysates were significantly lower in cultured SSc fibroblasts than in normal fibroblasts; however, the TSP-2 protein that accumulated in the conditioned medium of SSc fibroblasts was up-regulated, compared with that of normal fibroblasts, because of an increase in the half-life of the protein. In vivo serum TSP-2 levels were higher in SSc patients than in healthy control subjects, and SSc patients with elevated serum TSP-2 levels tended to have pitting scars and/or ulcers. TSP-2 knockdown resulted in the down-regulation of type I collagen expression and the up-regulation of miR-7, one of the miRNAs with an inhibitory effect on collagen expression. Expression levels of miR-7 were also up-regulated in SSc dermal fibroblasts both in vivo and in vitro. Taken together, these findings suggest that the increased extracellular TSP-2 deposition in SSc fibroblasts may contribute to tissue fibrosis by inducing collagen expression. Down-regulation of intracellular TSP-2 synthesis and the subsequent miR-7 up-regulation in SSc fibroblasts may be due to a negative feedback mechanism that prevents increased extracellular TSP-2 deposition and/or tissue fibrosis. Thus, TSP-2 may play an important role in the maintenance of fibrosis and angiopathy in patients with SSc.


Experimental Dermatology | 2011

Adiponectin expression is decreased in the involved skin and sera of diffuse cutaneous scleroderma patients

Hiroki Arakawa; Masatoshi Jinnin; Faith C. Muchemwa; Takamitsu Makino; Ikko Kajihara; Katsunari Makino; Noritoshi Honda; Keisuke Sakai; Satoshi Fukushima; Hironobu Ihn

Abstract:  In this study, we determined the adiponectin expression in the serum and lesional skin of patients with scleroderma (SSc). Serum adiponectin concentrations were measured in 32 patients with SSc, 10 patients with SLE, 12 patients with dermatomyositis patients and 13 healthy subjects with specific enzyme‐linked immunosorbent assays. Adiponectin mRNA was determined in skin tissues of five patients with diffuse cutaneous SSc (dcSSc), seven patients with limited cutaneous SSc (lcSSc) and seven healthy subjects with real‐time polymerase chain reaction. There was a significant reduction in serum adiponectin levels in patients with dcSSc. SSc patients with decreased serum adiponectin levels had higher total skin thickness score and higher incidence of pulmonary fibrosis. Adiponectin mRNA levels in skin tissues from patients with dcSSc were also reduced. Serum adiponectin levels may be a useful biomarker for fibrotic condition in patients with SSc. Clarifying the role of adiponectin in collagen diseases may lead to further understanding of the pathogenesis and new therapeutic approach.

Collaboration


Dive into the Takamitsu Makino's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge