Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takao Masuda is active.

Publication


Featured researches published by Takao Masuda.


Cancer Research | 2004

Graft-versus-Tax Response in Adult T-Cell Leukemia Patients after Hematopoietic Stem Cell Transplantation

Nanae Harashima; Kiyoshi Kurihara; Atae Utsunomiya; Ryuji Tanosaki; Shino Hanabuchi; Masato Masuda; Takashi Ohashi; Fumiyo Fukui; Atsuhiko Hasegawa; Takao Masuda; Yoichi Takaue; Jun Okamura; Mari Kannagi

Adult T-cell leukemia (ATL) caused by human T-cell leukemia virus type I (HTLV-I) is characterized by poor prognosis after chemotherapy. Recent clinical trials have indicated, however, that allogeneic but not autologous hematopoietic stem cell transplantation (HSCT) for ATL can yield better clinical outcomes. In the present study, we investigated cellular immune responses of ATL patients who obtained complete remission after nonmyeloablative allogeneic peripheral blood HSCT from HLA-identical sibling donors. In the culture of peripheral blood mononuclear cells (PBMCs) from a post-HSCT but not pre-HSCT ATL patient, CD8+ CTLs proliferated vigorously in response to stimulation with autologous HTLV-I-infected T cells that had been established before HSCT in vitro. These CTLs contained a large number of monospecific CTL population directed to a HLA-A2-restricted HTLV-I Tax 11-19 epitope. The frequency of Tax 11-19-specific CD8+ CTLs in this patient markedly increased also in vivo after HSCT, as determined by staining with HLA-A2/Tax 11-19 tetramers. Similar clonal expansion of HTLV-I Tax-specific CTLs exclusively directed to a HLA-A24-restricted Tax 301-309 epitope was observed in the PBMCs from another ATL patient after HSCT from a HTLV-I-negative donor. Among four post-HSCT ATL patients tested, HTLV-I-specific CTLs were induced in the PBMC culture from three patients but not from the remaining one who had later recurrence of ATL. These observations suggested that reconstituted immunity against antigen presentation in ATL patients after HSCT resulted in strong and selective graft-versus-HTLV-I response, which might contribute to graft-versus-leukemia effects.


Journal of Virology | 2000

Identification of Critical Amino Acid Residues in Human Immunodeficiency Virus Type 1 IN Required for Efficient Proviral DNA Formation at Steps prior to Integration in Dividing and Nondividing Cells

Naomi Tsurutani; Makoto Kubo; Yosuke Maeda; Takashi Ohashi; Naoki Yamamoto; Mari Kannagi; Takao Masuda

Human immunodeficiency virus type 1 integrase (HIV-1 IN) is thought to have several putative roles at steps prior to integration, such as reverse transcription and nuclear transport of the preintegration complex (PIC). Here, we investigated new functional aspects of HIV-1 IN in the context of the viral replication cycle through point mutagenesis of Ser, Thr, Tyr, Lys, and Arg residues conserved in IN, some of which are located at possible phosphorylation sites. Our results showed that mutations of these Ser or Thr residues had no effect on reverse transcription and nuclear transport of PIC but had a slight effect on integration. Of note, mutations in the conserved KRK motif (amino acids 186 to 189), proposed previously as a putative nuclear localization signal (NLS) of HIV-1 IN, did not affect the karyophilic property of HIV-1 IN as shown by using a green fluorescent protein fusion protein expression system. Instead, these KRK mutations resulted in an almost complete lack of viral gene expression due to the failure to complete reverse transcription. This defect was complemented by supplying wild-type IN in trans, suggesting a trans-acting function of the KRK motif of IN in reverse transcription. Mutation at the conserved Tyr 143 (Y143G) resulted in partial impairment of completion of reverse transcription in monocyte-derived macrophages (MDM) but not in rhabdomyosarcoma cells. Similar effects were obtained by introducing a stop codon in the vpr gene (DeltaVpr), and additive effects of both mutations (Y143G plus DeltaVpr) were observed. In addition, these mutants did not produce two-long terminal repeat DNA, a surrogate marker for nuclear entry, in MDM. Thus, the possible impairment of Y143G might occur during the nuclear transport of the PIC. Taken together, our results identified new functional aspects of the conserved residues in HIV-1 IN: i) the KRK motif might have a role in efficient reverse transcription in both dividing and nondividing cells but not in the NLS function; ii) Y143 might be an important residue for maintaining efficient proviral DNA formation in nondividing cells.


Journal of Virology | 2006

Effective Suppression of Human Immunodeficiency Virus Type 1 through a Combination of Short- or Long-Hairpin RNAs Targeting Essential Sequences for Retroviral Integration

Hironori Nishitsuji; Michinori Kohara; Mari Kannagi; Takao Masuda

ABSTRACT Small interfering RNA (siRNA) could provide a new therapeutic approach to treating human immunodeficiency virus type 1 (HIV-1) infection. For long-term suppression of HIV-1, emergence of siRNA escape variants must be controlled. Here, we constructed lentiviral vectors encoding short-hairpin RNAs (shRNA) corresponding to conserved target sequences within the integrase (int) and the attachment site (att) genes, both of which are essential for HIV-1 integration. Compared to shRNA targeting of the HIV-1 transcription factor tat (shTat), shRNA against int (shIN) or the U3 region of att (shU3) showed a more potent inhibitory effect on HIV-1 replication in human CD4+ T cells. Infection with a high dose of HIV-1 resulted in the emergence of escape mutants during long-term culture. Of note, limited genetic variation was observed in the viruses resistant to shIN. A combination of shINs against wild-type and escape mutant sequences had a negative effect on their antiviral activities, indicating a potentially detrimental effect when administering multiple shRNA targeting the same region to combat HIV-1 variants. The combination of shIN and shU3 att exhibited the strongest anti-HIV-1 activity, as seen by complete abrogation of viral DNA synthesis and viral integration. In addition, a modified long-hairpin RNA spanning the 50 nucleotides in the shIN target region effectively suppressed wild-type and shIN-resistant mutant HIV-1. These results suggest that targeting of incoming viral RNA before proviral DNA formation occurs through the use of nonoverlapping multiple siRNAs is a potent approach to achieving sustained, efficient suppression of highly mutable viruses, such as HIV-1.


Blood | 2008

Overexpressed NF-κB inducing kinase contributes to the tumorigenesis of adult T-cell leukemia and Hodgkin Reed-Sternberg cells

Yasunori Saitoh; Norio Yamamoto; M. Zahidunnabi Dewan; Haruyo Sugimoto; Vicente Javier Martínez Bruyn; Yuki Iwasaki; Katsuyoshi Matsubara; Xiaohua Qi; Tatsuya Saitoh; Issei Imoto; Johji Inazawa; Atae Utsunomiya; Toshiki Watanabe; Takao Masuda; Naoki Yamamoto; Shoji Yamaoka

The nuclear factor-kappaB (NF-kappaB) transcription factors play important roles in cancer development by preventing apoptosis and facilitating the tumor cell growth. However, the precise mechanisms by which NF-kappaB is constitutively activated in specific cancer cells remain largely unknown. In our current study, we now report that NF-kappaB-inducing kinase (NIK) is overexpressed at the pretranslational level in adult T-cell leukemia (ATL) and Hodgkin Reed-Sternberg cells (H-RS) that do not express viral regulatory proteins. The overexpression of NIK causes cell transformation in rat fibroblasts, which is abolished by a super-repressor form of IkappaBalpha. Notably, depletion of NIK in ATL cells by RNA interference reduces the DNA-binding activity of NF-kappaB and NF-kappaB-dependent transcriptional activity, and efficiently suppresses tumor growth in NOD/SCID/gammac(null) mice. These results indicate that the deregulated expression of NIK plays a critical role in constitutive NF-kappaB activation in ATL and H-RS cells, and suggest also that NIK is an attractive molecular target for cancer therapy.


Journal of Virology | 2006

Identification of a Novel Human Immunodeficiency Virus Type 1 Integrase Interactor, Gemin2, That Facilitates Efficient Viral cDNA Synthesis In Vivo

Seiji Hamamoto; Hironori Nishitsuji; Teruo Amagasa; Mari Kannagi; Takao Masuda

ABSTRACT Retroviral integrase (IN) catalyzes the integration of viral cDNA into a host chromosome. Additional roles have been suggested for IN, including uncoating, reverse transcription, and nuclear import of the human immunodeficiency virus type 1 (HIV-1) genome. However, the underlying mechanism is largely unknown. Here, using a yeast two-hybrid system, we identified a survival motor neuron (SMN)-interacting protein 1 (Gemin2) that binds to HIV-1 IN. Reduction of Gemin2 with small interfering RNA duplexes (siGemin2) dramatically reduced HIV-1 infection in human primary monocyte-derived macrophages and also reduced viral cDNA synthesis. In contrast, siGemin2 did not affect HIV-1 expression from the integrated proviral DNA. Although Gemin2 was undetectable in cell-free viral particles, coimmunoprecipitation experiments using FLAG-tagged Gemin2 strongly suggested that Gemin2 interacts with the incoming viral genome through IN. Further experiments reducing SMN or other SMN-interacting proteins suggested that Gemin2 might act on HIV-1 either alone or with unknown proteins to facilitate efficient viral cDNA synthesis soon after infection. Thus, we provide the evidence for a novel host protein that binds to HIV-1 IN and facilitates viral cDNA synthesis and subsequent steps that precede integration in vivo.


Journal of Virology | 2000

Prevention of Adult T-Cell Leukemia-Like Lymphoproliferative Disease in Rats by Adoptively Transferred T Cells from a Donor Immunized with Human T-Cell Leukemia Virus Type 1 Tax-Coding DNA Vaccine

Takashi Ohashi; Shino Hanabuchi; Hirotomo Kato; Hiromi Tateno; Fumiyo Takemura; Tomonori Tsukahara; Yoshihiro Koya; Atsuhiko Hasegawa; Takao Masuda; Mari Kannagi

ABSTRACT Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia (ATL) in infected individuals after a long incubation period. To dissect the mechanisms of the development of the disease, we have previously established a rat model of ATL-like disease which allows examination of the growth and spread of HTLV-1 infected tumor cells, as well assessment of the effects of immune T cells on the development of the disease. In the present study, we induced HTLV-1 Tax-specific cytotoxic T lymphocyte (CTL) immunity by vaccination with Tax-coding DNA and examined the effects of the DNA vaccine in our rat ATL-like disease model. Our results demonstrated that DNA vaccine with Tax effectively induced Tax-specific CTL activity in F344/N Jcl-rnu/+ (nu/+) rats and that these CTLs were able to lyse HTLV-1 infected syngeneic T cells in vitro. Adoptive transfer of these immune T cells effectively inhibited the in vivo growth of HTLV-1-transformed tumor in F344/N Jcl-rnu/rnu (nu/nu) rats inoculated with a rat HTLV-1 infected T cell line. Vaccination with mutant Tax DNA lacking transforming ability also induced efficient anti-tumor immunity in this model. Our results indicated a promising effect for DNA vaccine with HTLV-1 Tax against HTLV-1 tumor development in vivo.


Journal of Virology | 2004

Evaluation of the Functional Involvement of Human Immunodeficiency Virus Type 1 Integrase in Nuclear Import of Viral cDNA during Acute Infection

Tamako Ikeda; Hironori Nishitsuji; Xin Zhou; Nobuo Nara; Takashi Ohashi; Mari Kannagi; Takao Masuda

ABSTRACT Nuclear import of viral cDNA is a critical step for establishing the proviral state of human immunodeficiency virus type 1 (HIV-1). The contribution of HIV-1 integrase (IN) to the nuclear import of viral cDNA is controversial, partly due to a lack of identification of its bona fide nuclear localization signal. In this study, to address this putative function of HIV-1 IN, the effects of mutations at key residues for viral cDNA recognition (PYNP at positions 142 to 145, K156, K159, and K160) were evaluated in the context of viral replication. During acute infection, some mutations (N144Q, PYNP>KL, and KKK>AAA) severely reduced viral gene expression to less than 1% the wild-type (WT) level. None of the mutations affected the synthesis of viral cDNA. Meanwhile, the levels of integrated viral cDNA produced by N144Q, PYNP>KL, and KKK>AAA mutants were severely reduced to less than 1% the WT level. Quantitative PCR analysis of viral cDNA in nuclei and fluorescence in situ hybridization analysis showed that these mutations significantly reduced the level of viral cDNA accumulation in nuclei. Further analysis revealed that IN proteins carrying the N144Q, PYNP>KL, and KKK>AAA mutations showed severely reduced binding to viral cDNA but kept their karyophilic properties. Taken together, these results indicate that mutations that reduced the binding of IN to viral cDNA resulted in severe impairment of virus infectivity, most likely by affecting the nuclear import of viral cDNA that proceeds integration. These results suggest that HIV-1 IN may be one of the critical constituents for the efficient nuclear import of viral cDNA.


Virus Genes | 2003

Quantitative Analysis of Human Immunodeficiency Virus Type 1 DNA Dynamics by Real-Time PCR: Integration Efficiency in Stimulated and Unstimulated Peripheral Blood Mononuclear Cells

Youichi Suzuki; Naoko Misawa; Chihiro Sato; Hirotaka Ebina; Takao Masuda; Naoki Yamamoto; Yoshio Koyanagi

We established a set of real-time PCR assay to accurately quantify human immunodeficiency virus type 1 (HIV-1) DNA in infected cells. Using this assay we were able to measure the strong-stop, full-length/ 1-LTR circle, 2-LTR circle, and integrated forms of viral DNA, and the data provided was quite consistent with the characteristics of mutant viruses in early phase of infection. Since our assay is particularly applicable to quantify the integrated DNA in small scale of samples, we measured the level of integrated DNA in wild-type virus (WT)- or Vpr-defective virus (ΔVpr)-infected peripheral blood mononuclear cells (PBMC), and examined whether quiescent condition of the PBMC influences integration step of HIV-1. Under stimulating condition approximately 25% of total viral DNA was in integrated form in either WT- or ΔVpr-infected cells. In contrast, under unstimulated condition the level of integration efficiency was not significantly reduced in WT-infected cells, while this efficiency was severely impaired in the absence of vpr gene. This result clearly demonstrated a crucial role of the Vpr for nuclear localization and subsequent integration of viral DNA in nondividing cells. Therefore, our assay is useful for analyzing the events in early phase of HIV-1 infection under various conditions.


Journal of Virology | 2003

Expansion of human T-cell leukemia virus type 1 (HTLV-1) reservoir in orally infected rats: inverse correlation with HTLV-1-specific cellular immune response.

Atsuhiko Hasegawa; Takashi Ohashi; Shino Hanabuchi; Hirotomo Kato; Fumiyo Takemura; Takao Masuda; Mari Kannagi

ABSTRACT Adult T-cell leukemia (ATL) occurs in a small population of human T-cell leukemia virus type 1 (HTLV-1)-infected individuals. Although the critical risk factor for ATL development is not clear, it has been noted that ATL is incidentally associated with mother-to-child infection, elevated proviral loads, and weakness in HTLV-1-specific T-cell immune responses. In the present study, using a rat system, we investigated the relationships among the following conditions: primary HTLV-1 infection, a persistent HTLV-1 load, and host HTLV-1-specific immunity. We found that the persistent HTLV-1 load in orally infected rats was significantly greater than that in intraperitoneally infected rats. Even after inoculation with only 50 infected cells, a persistent viral load built up to considerable levels in some orally infected rats but not in intraperitoneally infected rats. In contrast, HTLV-1-specific cellular immune responses were markedly impaired in orally infected rats. As a result, a persistent viral load was inversely correlated with levels of virus-specific T-cell responses in these rats. Otherwise very weak HTLV-1-specific cellular immune responses in orally infected rats were markedly augmented after subcutaneous reimmunization with infected syngeneic rat cells. These findings suggest that HTLV-1-specific immune unresponsiveness associated with oral HTLV-1 infection may be a potential risk factor for development of ATL, allowing expansion of the infected cell reservoir in vivo, but could be overcome with immunological strategies.


Journal of Virology | 2009

Stromal Cell-Mediated Suppression of Human T-Cell Leukemia Virus Type 1 Expression In Vitro and In Vivo by Type I Interferon

Shuichi Kinpara; Atsuhiko Hasegawa; Atae Utsunomiya; Hironori Nishitsuji; Hiroyuki Furukawa; Takao Masuda; Mari Kannagi

ABSTRACT Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia (ATL), HTLV-1-associated myelopathy/tropical spastic paraparesis, and other inflammatory diseases. Despite such severe outcomes of HTLV-1 infection, the level of HTLV-1 expression in vivo is very low and rapidly increases after transfer of cells to culture conditions. The mechanisms of this phenomenon have remained obscure. In the present study, we found that human and mouse stromal cells, such as epithelial cells and fibroblasts, suppressed HTLV-1 expression in ATL and non-ATL HTLV-1-infected cells. HTLV-1 mRNA and proteins in HTLV-1-infected cells markedly decreased upon coculture with human epithelial-like cells (HEK293T) or mouse embryo fibroblasts (NIH 3T3). When infected cells were reisolated from the cocultures, viral expression was restored to the original level over the following 48 h. Spontaneous induction of HTLV-1 expression in primary ATL cells in the first 24 h of culture was also inhibited by coculture with HEK293T cells. Coculture of HTLV-1-infected cells and HEK293T cells induced type I interferon responses, as detected by beta interferon (IFN-β) promoter activation and IFN-stimulated gene upregulation. HEK293T-mediated suppression of HTLV-1 expression was partly inhibited by antibodies to human IFN-α/β receptor. NIH 3T3-mediated suppression was markedly abrogated by neutralizing antibodies to mouse IFN-β. Furthermore, viral expression in HTLV-1-infected cells was significantly suppressed when the infected cells were intraperitoneally injected into wild-type mice but not IFN regulatory factor 7 knockout mice that are deficient of type I IFN responses. These findings indicate that the innate immune system suppresses HTLV-1 expression in vivo, at least through type I IFN.

Collaboration


Dive into the Takao Masuda's collaboration.

Top Co-Authors

Avatar

Mari Kannagi

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Atsuhiko Hasegawa

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Takashi Ohashi

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Hironori Nishitsuji

Chiba Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kiyoshi Kurihara

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Ayako Takamori

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Shino Hanabuchi

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Hirotomo Kato

Jichi Medical University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge