Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takashi Ikka is active.

Publication


Featured researches published by Takashi Ikka.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance.

Satoshi Iuchi; Hiroyuki Koyama; Atsuko Iuchi; Yasufumi Kobayashi; Sadako Kitabayashi; Yuriko Kobayashi; Takashi Ikka; Takashi Hirayama; Kazuo Shinozaki; Masatomo Kobayashi

Acid soil syndrome causes severe yield losses in various crop plants because of the rhizotoxicities of ions, such as aluminum (Al3+). Although protons (H+) could be also major rhizotoxicants in some soil types, molecular mechanisms of their tolerance have not been identified yet. One mutant that was hypersensitive to H+ rhizotoxicity was isolated from ethyl methanesulfonate mutagenized seeds, and a single recessive mutation was found on chromosome 1. Positional cloning followed by genomic sequence analysis revealed that a missense mutation in the zinc finger domain in a predicted Cys2His2-type zinc finger protein, namely sensitive to proton rhizotoxicity (STOP)1, is the cause of hypersensitivity to H+ rhizotoxicity. The STOP1 protein belongs to a functionally unidentified subfamily of zinc finger proteins, which consists of two members in Arabidopsis based on a Blast search. The stop1 mutation resulted in no effects on cadmium, copper, lanthanum, manganese and sodium chloride sensitivitities, whereas it caused hypersensitivity to Al3+ rhizotoxicity. This stop1 mutant lacked the induction of the AtALMT1 gene encoding a malate transporter, which is concomitant with Al-induced malate exudation. There was no induction of AtALMT1 by Al3+ treatment in the stop1 mutant. These results indicate that STOP1 plays a critical role in Arabidopsis tolerance to major stress factors in acid soils.


Plant Physiology | 2009

STOP1 Regulates Multiple Genes That Protect Arabidopsis from Proton and Aluminum Toxicities

Yoshiharu Sawaki; Satoshi Iuchi; Yasufumi Kobayashi; Yuriko Kobayashi; Takashi Ikka; Nozomu Sakurai; Miki Fujita; Kazuo Shinozaki; Daisuke Shibata; Masatomo Kobayashi; Hiroyuki Koyama

The Arabidopsis (Arabidopsis thaliana) mutant stop1 (for sensitive to proton rhizotoxicity1) carries a missense mutation at an essential domain of the histidine-2-cysteine-2 zinc finger protein STOP1. Transcriptome analyses revealed that various genes were down-regulated in the mutant, indicating that STOP1 is involved in signal transduction pathways regulating aluminum (Al)- and H+-responsive gene expression. The Al hypersensitivity of the mutant could be caused by down-regulation of AtALMT1 (for Arabidopsis ALUMINUM-ACTIVATED MALATE TRANSPORTER1) and ALS3 (ALUMINUM-SENSITIVE3). This hypothesis was supported by comparison of Al tolerance among T-DNA insertion lines and a transgenic stop mutant carrying cauliflower mosaic virus 35S∷AtALMT1. All T-DNA insertion lines of STOP1, AtALMT1, and ALS3 were sensitive to Al, but introduction of cauliflower mosaic virus 35S∷AtALMT1 did not completely restore the Al tolerance of the stop1 mutant. Down-regulation of various genes involved in ion homeostasis and pH-regulating metabolism in the mutant was also identified by microarray analyses. CBL-INTERACTING PROTEIN KINASE23, regulating a major K+ transporter, and a sulfate transporter, SULT3;5, were down-regulated in the mutant. In addition, integral profiling of the metabolites and transcripts revealed that pH-regulating metabolic pathways, such as the γ-aminobutyric acid shunt and biochemical pH stat pathways, are down-regulated in the mutant. These changes could explain the H+ hypersensitivity of the mutant and would make the mutant more susceptible in acid soil stress than other Al-hypersensitive T-DNA insertion lines. Finally, we showed that STOP1 is localized to the nucleus, suggesting that the protein regulates the expression of multiple genes that protect Arabidopsis from Al and H+ toxicities, possibly as a transcription factor.


Scientific Reports | 2013

A natural variant of NAL1 , selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate

Toshiyuki Takai; Shunsuke Adachi; Fumio Taguchi-Shiobara; Yumiko Sanoh-Arai; Norio Iwasawa; Satoshi Yoshinaga; Sakiko Hirose; Yojiro Taniguchi; Utako Yamanouchi; Jianzhong Wu; Takashi Matsumoto; Kazuhiko Sugimoto; Katsuhiko Kondo; Takashi Ikka; Tsuyu Ando; Izumi Kono; Sachie Ito; Ayahiko Shomura; Taiichiro Ookawa; Tadashi Hirasawa; Masahiro Yano; Motohiko Kondo; Toshio Yamamoto

Improvement of leaf photosynthesis is an important strategy for greater crop productivity. Here we show that the quantitative trait locus GPS (GREEN FOR PHOTOSYNTHESIS) in rice (Oryza sativa L.) controls photosynthesis rate by regulating carboxylation efficiency. Map-based cloning revealed that GPS is identical to NAL1 (NARROW LEAF1), a gene previously reported to control lateral leaf growth. The high-photosynthesis allele of GPS was found to be a partial loss-of-function allele of NAL1. This allele increased mesophyll cell number between vascular bundles, which led to thickened leaves, and it pleiotropically enhanced photosynthesis rate without the detrimental side effects observed in previously identified nal1 mutants, such as dwarf plant stature. Furthermore, pedigree analysis suggested that rice breeders have repeatedly selected the high-photosynthesis allele in high-yield breeding programs. The identification and utilization of NAL1 (GPS) can enhance future high-yield breeding and provides a new strategy for increasing rice productivity.


BMC Plant Biology | 2009

Comparative transcriptomic characterization of aluminum, sodium chloride, cadmium and copper rhizotoxicities in Arabidopsis thaliana

Cheng-Ri Zhao; Takashi Ikka; Yoshiharu Sawaki; Yuriko Kobayashi; Yuji Suzuki; Takashi Hibino; Shigeru Sato; Nozomu Sakurai; Daisuke Shibata; Hiroyuki Koyama

BackgroundRhizotoxic ions in problem soils inhibit nutrient and water acquisition by roots, which in turn leads to reduced crop yields. Previous studies on the effects of rhizotoxic ions on root growth and physiological functions suggested that some mechanisms were common to all rhizotoxins, while others were more specific. To understand this complex system, we performed comparative transcriptomic analysis with various rhizotoxic ions, followed by bioinformatics analysis, in the model plant Arabidopsis thaliana.ResultsRoots of Arabidopsis were treated with the major rhizotoxic stressors, aluminum (Al) ions, cadmium (Cd) ions, copper (Cu) ions and sodium (NaCl) chloride, and the gene expression responses were analyzed by DNA array technology. The top 2.5% of genes whose expression was most increased by each stressor were compared with identify common and specific gene expression responses induced by these stressors. A number of genes encoding glutathione-S-transferases, peroxidases, Ca-binding proteins and a trehalose-synthesizing enzyme were induced by all stressors. In contrast, gene ontological categorization identified sets of genes uniquely induced by each stressor, with distinct patterns of biological processes and molecular function. These contained known resistance genes for each stressor, such as AtALMT1 (encoding Al-activated malate transporter) in the Al-specific group and DREB (encoding dehydration responsive element binding protein) in the NaCl-specific group. These gene groups are likely to reflect the common and differential cellular responses and the induction of defense systems in response to each ion. We also identified co-expressed gene groups specific to rhizotoxic ions, which might aid further detailed investigation of the response mechanisms.ConclusionIn order to understand the complex responses of roots to rhizotoxic ions, we performed comparative transcriptomic analysis followed by bioinformatics characterization. Our analyses revealed that both general and specific genes were induced in Arabidopsis roots exposed to various rhizotoxic ions. Several defense systems, such as the production of reactive oxygen species and disturbance of Ca homeostasis, were triggered by all stressors, while specific defense genes were also induced by individual stressors. Similar studies in different plant species could help to clarify the resistance mechanisms at the molecular level to provide information that can be utilized for marker-assisted selection.


Plant Physiology | 2013

Characterization of AtSTOP1 Orthologous Genes in Tobacco and Other Plant Species

Yoshinao Ohyama; Hiroki Ito; Yuriko Kobayashi; Takashi Ikka; Akio Morita; Masatomo Kobayashi; Ryujiro Imaizumi; Toshio Aoki; Kenji Komatsu; Yoichi Sakata; Satoshi Iuchi; Hiroyuki Koyama

Diverse land plant species possess similar proteins that function in transcriptional regulation of aluminum tolerance. Aluminum (Al) and proton (H+) tolerances are essential traits for plants to adapt to acid soil environments. In Arabidopsis (Arabidopsis thaliana), these tolerances are mediated by a zinc-finger transcription factor, SENSITIVE TO PROTON RHIZOTOXICITY1 (AtSTOP1), which regulates the transcription of multiple genes critical for tolerance to both stressors. Here, the functions of orthologous proteins (STOP1-like proteins) in other plant species were characterized by reverse genetics analyses and in planta complementation assays. RNA interference of a gene for NtSTOP1 repressed Al and H+ tolerances of tobacco (Nicotiana tabacum) roots. Tobacco roots released citrate in response to Al, concomitant with the up-regulated transcription of an ortholog of an Al tolerance gene encoding a citrate-transporting multidrug and toxic compound extrusion protein. The RNA interference repression of NtSTOP1 blocked this process and also repressed the transcription of another orthologous gene for Al tolerance, ALUMINUM SENSITIVE3, which encodes a prokaryote-type transporter. These results demonstrated that NtSTOP1 regulates Al tolerance in tobacco through the transcriptional regulation of these genes. The in planta complementation assays revealed that other plant species, including woody plants, a legume, and a moss (Physcomitrella patens), possess functional STOP1-like proteins that can activate several H+ and Al-tolerance genes in Arabidopsis. Knocking out the gene encoding the STOP1-like protein decreased the Al tolerance of P. patens. Together, our results strongly suggest that transcriptional regulation by STOP1-like proteins is evolutionarily conserved among land plants and that it confers the ability to survive in acid soils through the transcriptional regulation of Al- and H+-tolerance genes.


Soil Science and Plant Nutrition | 2011

Tea plant (Camellia sinensis L.) roots secrete oxalic acid and caffeine into medium containing aluminum

Akio Morita; Osamu Yanagisawa; Setsuko Maeda; Satoshi Takatsu; Takashi Ikka

We examined the response of the tea plant (Camellia sinensis L.) to aluminum (Al) exposure under sterile conditions, focusing specifically on the secretion of low molecular mass organic compounds from roots. After germination in agar medium, tea seedlings together with medium were placed on agar containing 0.4 mM Al with 0.2% hematoxyline (hematoxylin-Al medium). The purple color of the hematoxylin-Al medium was observed to fade gradually, until none of the color remained 6 days later. The tea seedlings were then treated with simple calcium solution (0.2 mM, at pH 4.2) containing AlCl3, which ranged in concentration from 0 to 0.8 mM, for 24 hrs. The amount of oxalate secreted into the medium increased as the external Al concentration increased, while the concentrations of malate and citrate in the medium remained unchanged. Oxalate secretion started within 30 min after Al exposure and increased linearly thereafter. The findings demonstrated that oxalate was a key compound in the Al-tolerance mechanism employed by the tea plant, which detoxifies Al3+ externally in the rhizosphere. In addition to oxalate, caffeine was also secreted by tea roots in response to Al exposure. It is possible that caffeine excretion from the roots of tea plants may stimulate root growth through the inhibition of callose deposition in root tips.


Functional Plant Biology | 2007

Characterisation of lanthanum toxicity for root growth of Arabidopsis thaliana from the aspect of natural genetic variation

Yuriko Kobayashi; Takashi Ikka; Kazuhiko Kimura; Orito Yasuda; Hiroyuki Koyama

The mechanism of lanthanum (La3+) toxicity on root growth of Arabidopsis was studied by physiological and genetic approaches using Landsberg erecta (Ler) × Columbia (Col) recombinant inbred lines (RILs) and other natural accessions. Quantitative trait locus (QTL) analyses revealed regulation of La3+ tolerance of the Ler × Col RILs by multiple genetic factors consisted of three significant QTLs and seven epistatic interacting loci pairs. The La content in the root tip was not correlated with La3+ tolerance in the RILs, indicating that the observed La3+ rhizotoxicity was not related to direct toxicity of La3+ in the symplast. The La3+ tolerance of root growth in the RILs was not correlated with Al3+ and Cu2+ tolerances, but was correlated with tolerances for other rare earth elements, including Gd3+, a known Ca2+ channel antagonist, and verapamil, a Ca2+ channel blocker. The genetic architecture of verapamil tolerance in root growth, which was identified by QTL analysis, was closely related to that of La3+ tolerance. La3+ tolerance and verapamil tolerance or Gd3+ tolerance in natural accessions of Arabidopsis also showed a positive correlation. These results indicate that the major La3+ toxicity on the root growth of Arabidopsis may involve its action as a Ca2+ channel antagonist.


BMC Plant Biology | 2014

Genetic mechanisms underlying yield potential in the rice high-yielding cultivar Takanari, based on reciprocal chromosome segment substitution lines

Toshiyuki Takai; Takashi Ikka; Katsuhiko Kondo; Yasunori Nonoue; Nozomi Ono; Yumiko Arai-Sanoh; Satoshi Yoshinaga; Hiroshi Nakano; Masahiro Yano; Motohiko Kondo; Toshio Yamamoto

BackgroundIncreasing rice yield potential is a major objective in rice breeding programs, given the need for meeting the demands of population growth, especially in Asia. Genetic analysis using genomic information and high-yielding cultivars can facilitate understanding of the genetic mechanisms underlying rice yield potential. Chromosome segment substitution lines (CSSLs) are a powerful tool for the detection and precise mapping of quantitative trait loci (QTLs) that have both large and small effects. In addition, reciprocal CSSLs developed in both parental cultivar backgrounds may be appropriate for evaluating gene activity, as a single factor or in epistatic interactions.ResultsWe developed reciprocal CSSLs derived from a cross between Takanari (one of the most productive indica cultivars) and a leading japonica cultivar, Koshihikari; both the cultivars were developed in Japan. Forty-one CSSLs covered most of the Takanari genome in the Koshihikari background and 39 CSSLs covered the Koshihikari genome in the Takanari background. Using the reciprocal CSSLs, we conducted yield trials under canopy conditions in paddy fields. While no CSSLs significantly exceeded the recurrent parent cultivar in yield, genetic analysis detected 48 and 47 QTLs for yield and its components in the Koshihikari and Takanari backgrounds, respectively. A number of QTLs showed a trade-off, in which the allele with increased sink-size traits (spikelet number per panicle or per square meter) was associated with decreased ripening percentage or 1000-grain weight. These results indicate that increased sink size is not sufficient to increase rice yield in both backgrounds. In addition, most QTLs were detected in either one of the two genetic backgrounds, suggesting that these loci may be under epistatic control with other gene(s).ConclusionsWe demonstrated that the reciprocal CSSLs are a useful tool for understanding the genetic mechanisms underlying yield potential in the high-yielding rice cultivar Takanari. Our results suggest that sink-size QTLs in combination with QTLs for source strength or translocation capacity, as well as careful attention to epistatic interactions, are necessary for increasing rice yield. Thus, our findings provide a foundation for developing rice cultivars with higher yield potential in future breeding programs.


Journal of Experimental Botany | 2015

Higher sterol content regulated by CYP51 with concomitant lower phospholipid content in membranes is a common strategy for aluminium tolerance in several plant species

Tadao Wagatsuma; Md. Shahadat Hossain Khan; Toshihiro Watanabe; Eriko Maejima; Hitoshi Sekimoto; Takao Yokota; Takeshi Nakano; Tomonobu Toyomasu; Keitaro Tawaraya; Hiroyuki Koyama; Matsuo Uemura; Satoru Ishikawa; Takashi Ikka; Akifumi Ishikawa; Takeshi Kawamura; Satoshi Murakami; Nozomi Ueki; Asami Umetsu; Takayuki Kannari

Highlight Higher sterol content regulated by CYP51 with concomitant lower phospholipid contents in root tips results in higher aluminium tolerance. This strategy is common to different varieties of plant species.


BMC Plant Biology | 2015

Genetic architecture of variation in heading date among Asian rice accessions.

Kiyosumi Hori; Yasunori Nonoue; Nozomi Ono; Taeko Shibaya; Kaworu Ebana; Kazuki Matsubara; Eri Ogiso-Tanaka; Takanari Tanabata; Kazuhiko Sugimoto; Fumio Taguchi-Shiobara; Jun-ichi Yonemaru; Ritsuko Mizobuchi; Yusaku Uga; Atsunori Fukuda; Tadamasa Ueda; Shinichi Yamamoto; Utako Yamanouchi; Toshiyuki Takai; Takashi Ikka; Katsuhiko Kondo; Tomoki Hoshino; Eiji Yamamoto; Shunsuke Adachi; Hideki Nagasaki; Ayahiko Shomura; Takehiko Shimizu; Izumi Kono; Sachie Ito; Tatsumi Mizubayashi; Noriyuki Kitazawa

BackgroundHeading date, a crucial factor determining regional and seasonal adaptation in rice (Oryza sativa L.), has been a major selection target in breeding programs. Although considerable progress has been made in our understanding of the molecular regulation of heading date in rice during last two decades, the previously isolated genes and identified quantitative trait loci (QTLs) cannot fully explain the natural variation for heading date in diverse rice accessions.ResultsTo genetically dissect naturally occurring variation in rice heading date, we collected QTLs in advanced-backcross populations derived from multiple crosses of the japonica rice accession Koshihikari (as a common parental line) with 11 diverse rice accessions (5 indica, 3 aus, and 3 japonica) that originate from various regions of Asia. QTL analyses of over 14,000 backcrossed individuals revealed 255 QTLs distributed widely across the rice genome. Among the detected QTLs, 128 QTLs corresponded to genomic positions of heading date genes identified by previous studies, such as Hd1, Hd6, Hd3a, Ghd7, DTH8, and RFT1. The other 127 QTLs were detected in different chromosomal regions than heading date genes.ConclusionsOur results indicate that advanced-backcross progeny allowed us to detect and confirm QTLs with relatively small additive effects, and the natural variation in rice heading date could result from combinations of large- and small-effect QTLs. We also found differences in the genetic architecture of heading date (flowering time) among maize, Arabidopsis, and rice.

Collaboration


Dive into the Takashi Ikka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daisuke Shibata

Kyoto Prefectural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Toshio Yamamoto

National Agriculture and Food Research Organization

View shared research outputs
Researchain Logo
Decentralizing Knowledge