Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takashi Izawa is active.

Publication


Featured researches published by Takashi Izawa.


Osteoarthritis and Cartilage | 2009

Biomechanical and biochemical characteristics of the mandibular condylar cartilage

Shingo Kuroda; Kotaro Tanimoto; Takashi Izawa; Shinji Fujihara; J.H. Koolstra; Eiji Tanaka

The human masticatory system consists of a mandible which is able to move with respect to the skull at its bilateral temporomandibular joint (TMJ) through contractions of the masticatory muscles. Like other synovial joints, the TMJ is loaded mechanically during function. The articular surface of the mandibular condyle is covered with cartilage that is composed mainly of collagen fibers and proteoglycans. This construction results in a viscoelastic response to loading and enables the cartilage to play an important role as a stress absorber during function. To understand its mechanical functions properly, and to assess its limitations, detailed information about the viscoelastic behavior of the mandibular condylar cartilage is required. The purpose of this paper is to review the fundamental concepts of the biomechanical behavior of the mandibular condylar cartilage. This review consists of four parts. Part 1 is a brief introduction of the structure and function of the mandibular condylar cartilage. In Part 2, the biochemical composition of the mandibular condylar cartilage is summarized. Part 3 explores the biomechanical properties of the mandibular condylar cartilage. Finally, Part 4 relates this behavior to the breakdown mechanism of the mandibular condylar cartilage which is associated with the progression of osteoarthritis in the TMJ.


Molecular and Cellular Biology | 2013

Talin1 and Rap1 Are Critical for Osteoclast Function

Wei Zou; Takashi Izawa; Tingting Zhu; Jean Chappel; Karel Otero; Susan J. Monkley; David R. Critchley; Brian G. Petrich; Alexei Morozov; Mark H. Ginsberg; Steven L. Teitelbaum

ABSTRACT To determine talin1s role in osteoclasts, we mated TLN1fl/fl mice with those expressing cathepsin K-Cre (CtsK-TLN1) to delete the gene in mature osteoclasts or with lysozyme M-Cre (LysM-TLN1) mice to delete TLN1 in all osteoclast lineage cells. Absence of TLN1 impairs macrophage colony-stimulating factor (M-CSF)-stimulated inside-out integrin activation and cytoskeleton organization in mature osteoclasts. Talin1-deficient precursors normally express osteoclast differentiation markers when exposed to M-CSF and receptor activator of nuclear factor κB (RANK) ligand but attach to substrate and migrate poorly, arresting their development into mature resorptive cells. In keeping with inhibited resorption, CtsK-TLN1 mice exhibit an ∼5-fold increase in bone mass. Osteoclast-specific deletion of Rap1 (CtsK-Rap1), which promotes talin/β integrin recognition, yields similar osteopetrotic mice. The fact that the osteopetrosis of CtsK-TLN1 and CtsK-Rap1 mice is substantially more severe than that of those lacking αvβ3 is likely due to added failed activation of β1 integrins. In keeping with osteoclast dysfunction, mice in whom talin is deleted late in the course of osteoclastogenesis are substantially protected from ovariectomy-induced osteoporosis and the periarticular osteolysis attending inflammatory arthritis. Thus, talin1 and Rap1 are critical for resorptive function, and their selective inhibition in mature osteoclasts retards pathological bone loss.


Molecular and Cellular Biology | 2012

c-Src Links a RANK/αvβ3 Integrin Complex to the Osteoclast Cytoskeleton

Takashi Izawa; Wei Zou; Jean Chappel; Jason W. Ashley; Xu Feng; Steven L. Teitelbaum

ABSTRACT RANK ligand (RANKL), by mechanisms unknown, directly activates osteoclasts to resorb bone. Because c-Src is key to organizing the cells cytoskeleton, we asked if the tyrosine kinase also mediates RANKL-stimulated osteoclast activity. RANKL induces c-Src to associate with RANK369–373 in an αvβ3-dependent manner. Furthermore, RANK369–373 is the only one of six putative TRAF binding motifs sufficient to generate actin rings and activate the same cytoskeleton-organizing proteins as the integrin. While c-Src organizes the cells cytoskeleton in response to the cytokine, it does not participate in RANKL-stimulated osteoclast formation. Attesting to their collaboration, αvβ3 and activated RANK coprecipitate, but only in the presence of c-Src. c-Src binds activated RANK via its Src homology 2 (SH2) domain and αvβ3 via its SH3 domain, suggesting the kinase links the two receptors. Supporting this hypothesis, deletion or inactivating point mutation of either the c-Src SH2 or SH3 domain obviates the RANK/αvβ3 association. Thus, activated RANK prompts two distinct signaling pathways; one promotes osteoclast formation, and the other, in collaboration with c-Src-mediated linkage to αvβ3, organizes the cells cytoskeleton.


Cell Reports | 2015

ASXL2 Regulates Glucose, Lipid, and Skeletal Homeostasis

Takashi Izawa; Nidhi Rohatgi; Tomohiro Fukunaga; Qun Tian Wang; Matthew J. Silva; Michael J. Gardner; Michael L. McDaniel; Nada A. Abumrad; Clay F. Semenkovich; Steven L. Teitelbaum; Wei Zou

ASXL2 is an ETP family protein that interacts with PPARγ. We find that ASXL2-/- mice are insulin resistant, lipodystrophic, and fail to respond to a high-fat diet. Consistent with genetic variation at the ASXL2 locus and human bone mineral density, ASXL2-/- mice are also severely osteopetrotic because of failed osteoclast differentiation attended by normal bone formation. ASXL2 regulates the osteoclast via two distinct signaling pathways. It induces osteoclast formation in a PPARγ/c-Fos-dependent manner and is required for RANK ligand- and thiazolidinedione-induced bone resorption independent of PGC-1β. ASXL2 also promotes osteoclast mitochondrial biogenesis in a process mediated by PGC-1β but independent of c-Fos. Thus, ASXL2 is a master regulator of skeletal, lipid, and glucose homeostasis.


PLOS ONE | 2012

Fas-Independent T-Cell Apoptosis by Dendritic Cells Controls Autoimmune Arthritis in MRL/lpr Mice

Takashi Izawa; Tomoyuki Kondo; Mie Kurosawa; Ritsuko Oura; Kazuma Matsumoto; Eiji Tanaka; Akiko Yamada; Rieko Arakaki; Yasusei Kudo; Yoshio Hayashi; Naozumi Ishimaru

Background Although autoimmunity in MRL/lpr mice occurs due to a defect in Fas-mediated cell death of T cells, the role of Fas-independent apoptosis in pathogenesis has rarely been investigated. We have recently reported that receptor activator of nuclear factor (NF)-κB ligand (RANKL)-activated dendritic cells (DCs) play a key role in the pathogenesis of rheumatoid arthritis (RA) in MRL/lpr mice. We here attempted to establish a new therapeutic strategy with RANKL-activated DCs in RA by controlling apoptosis of peripheral T cells. Repeated transfer of RANKL-activated DCs into MRL/lpr mice was tested to determine whether this had a therapeutic effect on autoimmunity. Methods and Finding Cellular and molecular mechanisms of Fas-independent apoptosis of T cells induced by the DCs were investigated by in vitro and in vivo analyses. We demonstrated that repeated transfers of RANKL-activated DCs into MRL/lpr mice resulted in therapeutic effects on RA lesions and lymphoproliferation due to declines of CD4+ T, B, and CD4−CD8− double negative (DN) T cells. We also found that the Fas-independent T-cell apoptosis was induced by a direct interaction between tumor necrosis factor (TNF)-related apoptosis-inducing ligand-receptor 2 (TRAIL-R2) on T cells and TRAIL on Fas-deficient DCs in MRL/lpr mice. Conclusion These results strongly suggest that a novel Fas-independent apoptosis pathway in T cells maintains peripheral tolerance and thus controls autoimmunity in MRL/lpr mice.


Archives of Oral Biology | 2009

Analysis of gene expression profiles in human periodontal ligament cells under hypoxia: The protective effect of CC chemokine ligand 2 to oxygen shortage

Yukiko Kitase; Masahiko Yokozeki; Shinji Fujihara; Takashi Izawa; Shingo Kuroda; Kotaro Tanimoto; Keiji Moriyama; Eiji Tanaka

Periodontal ligament (PDL) cells appear to play important functional roles in response to mechanical stress. We hypothesized that hypoxia caused by a deformation of blood vessels and the following ischaemia may play a crucial role in differential gene expression in PDL cells affected by mechanical stress. Gene induction in cultured human PDL cells by hypoxia was analyzed using cDNA array, followed by RT-PCR analysis. Eleven hypoxia-responsive genes were found differentially expressed under low-oxygen conditions in PDL cells. Among them, CCR2, CC chemokine ligand 2 (CCL2) receptor was studied in more detail since little information is available on the role of chemokines in adaptive responses of PDL cells under hypoxia. Here we investigate whether CCR2 mediates the signalling to maintain the homeostasis of PDL cells. We found that cell death of PDL cells was induced under hypoxia with down-regulation of CCL2 mRNA expression. However, the exogenous CCL2 prevented PDL cell death under oxygen shortage with the increment of cellular inhibitor of apoptosis (cIAP) mRNA expression. The present study demonstrated substantial effects of hypoxia on gene expression of CCL2 and CCR2 in PDL cells, indicating that mechanical loading accompanied with mild hypoxia allows PDL cells to elicit adaptive responses with up-regulation of CCR2.


Journal of Immunology | 2016

The Nuclear Receptor AhR Controls Bone Homeostasis by Regulating Osteoclast Differentiation via the RANK/c-Fos Signaling Axis

Takashi Izawa; Rieko Arakaki; Hiroki Mori; Takaaki Tsunematsu; Yasusei Kudo; Eiji Tanaka; Naozumi Ishimaru

The aryl hydrocarbon receptor (AhR) pathway plays a key role in receptor activator of NF-κB ligand (RANKL)–mediated osteoclastogenesis. However, the mechanism underlying the regulation of AhR expression in osteoclasts and the signaling pathway through which AhR controls osteoclastogenesis remain unclear. We found that the expression of AhR in bone marrow–derived osteoclasts was upregulated by RANKL at an earlier stage than was the expression of signature osteoclast genes such as those encoding cathepsin K and NFAT, cytoplasmic, calcineurin-dependent 1. In response to RANKL, bone marrow macrophages isolated from AhR−/− mice exhibited impaired phosphorylation of Akt and MAPK as well as NF-κB, whereas their response to M-CSF remained unchanged. Osteoclast differentiation mediated by the AhR signaling pathway was also regulated in an RANKL/c-Fos–dependent manner. Furthermore, ligand activation of AhR by the smoke toxin benzo[a]pyrene accelerated osteoclast differentiation in a receptor-dependent manner, and AhR-dependent regulation of mitochondrial biogenesis in osteoclasts was observed. Moreover, AhR−/− mice exhibited impaired bone healing with delayed endochondral ossification. Taken together, the present results suggest that the RANKL/AhR/c-Fos signaling axis plays a critical role in osteoclastogenesis, thereby identifying the potential of AhR in treating pathological, inflammatory, or metabolic disorders of the bone.


Journal of Anatomy | 2008

Regional differences in fiber characteristics in the rat temporalis muscle

Eiji Tanaka; Ryota Sano; Nobuhiko Kawai; J.A.M. Korfage; Saika Nakamura; Takashi Izawa; G.E.J. Langenbach; Kazuo Tanne

The behavioral differences in muscle use are related to the fiber type composition of the muscles among other variables. The aim of this study was to examine the degree of heterogeneity in the fiber type composition in the rat temporalis muscle. The temporalis muscle was taken from 10‐week‐old Wistar strain male rats (n = 5). Fiber types were classified by immunohistochemical staining according to their myosin heavy chain content. The anterior temporalis revealed an obvious regional difference of the fiber type distribution, whereas the posterior temporalis was homogeneous. The deep anterior temporalis showed a predominant proportion of type IIA fibers and was the only muscle portion displaying slow type fibers (< 10%). The other two muscle portions, the superficial anterior and posterior temporalis, did not differ significantly from each other and contained mainly type IIB fibers. Moreover, the deep anterior temporalis was the only muscle portion showing slow type fibers (< 10%). In the deep portion, type IIX fibers revealed the largest cross‐sectional area (1943.1 ± 613.7 µm2), which was significantly (P < 0.01) larger than those of type IIA and I + IIA fibers. The cross‐sectional area of type IIB fibers was the largest in the remaining two muscle portions and was significantly (P < 0.01) larger than that of type IIX fibers. In conclusion, temporalis muscle in rats showed an obvious heterogeneity of fiber type composition and fiber cross‐sectional area, which suggests multiple functions of this muscle.


Archives of Oral Biology | 2017

Roles of hypoxia inducible factor-1α in the temporomandibular joint

Akiko Mino-Oka; Takashi Izawa; Takehiro Shinohara; Hiroki Mori; Akihiro Yasue; Shuhei Tomita; Eiji Tanaka

OBJECTIVE Temporomandibular joint osteoarthritis (TMJ-OA) is a degenerative disease characterized by permanent cartilage loss. Articular cartilage is maintained in a low-oxygen environment. The chondrocyte response to hypoxic conditions involves expression of hypoxia inducible factor 1α (HIF-1α), which induces chondrocytes to increase expression of vascular endothelial growth factor (VEGF). Here, we investigated the role of HIF-1α in mechanical load effects on condylar cartilage and subchondral bone in heterozygous HIF-1α-deficient mice (HIF-1α+/-). DESIGN Mechanical stress was applied to the TMJ of C57BL/6NCr wild-type (WT) and HIF-1α+/- mice with a sliding plate for 10 days. Histological analysis was performed by HE staining, Safranin-O/Fast green staining, and immunostaining specific for articular cartilage homeostasis. RESULTS HIF-1α+/- mice had thinner cartilage and smaller areas of proteoglycan than WT controls, without and with mechanical stress. Mechanical stress resulted in prominent degenerative changes with increased expression of HIF-1α, VEGF, and the apoptosis factor cleaved Caspase-3 in condylar cartilage. CONCLUSION Our results indicate that HIF-1α may be important for articular cartilage homeostasis and protective against articular cartilage degradation in the TMJ under mechanical stress condition, therefore HIF-1α could be an important new therapeutic target in TMJ-OA.


American Journal of Pathology | 2015

Smad3 deficiency leads to mandibular condyle degradation via the sphingosine 1-phosphate (S1P)/S1P3 signaling axis.

Hiroki Mori; Takashi Izawa; Eiji Tanaka

Temporomandibular joint osteoarthritis is a degenerative disease that is characterized by permanent cartilage destruction. Transforming growth factor (TGF)-β is one of the most abundant cytokines in the bone matrix and is shown to regulate the migration of osteoprogenitor cells. It is hypothesized that TGF-β/Smad3 signaling affects cartilage homeostasis by influencing sphingosine 1-phosphate (S1P)/S1P receptor signaling and chondrocyte migration. We therefore investigated the molecular mechanisms by which crosstalk may occur between TGF-β/Smad3 and S1P/S1P receptor signaling to maintain condylar cartilage and to prevent temporomandibular joint osteoarthritis. Abnormalities in the condylar subchondral bone, including dynamic changes in bone mineral density and microstructure, were observed in Smad3(-/-) mice by microcomputed tomography. Cell-free regions and proteoglycan loss characterized the cartilage degradation present, and increased numbers of apoptotic chondrocytes and matrix metalloproteinase 13(+) chondrocytes were also detected. Furthermore, expression of S1P receptor 3 (S1P3), but not S1P1 or S1P2, was significantly down-regulated in the condylar cartilage of Smad3(-/-) mice. By using RNA interference technology and pharmacologic tools, S1P was found to transactivate Smad3 in an S1P3/TGF-β type II receptor-dependent manner, and S1P3 was found to be required for TGF-β-induced migration of chondrocyte cells and downstream signal transduction via Rac1, RhoA, and Cdc42. Taken together, these results indicate that the Smad3/S1P3 signaling pathway plays an important role in the pathogenesis of temporomandibular joint osteoarthritis.

Collaboration


Dive into the Takashi Izawa's collaboration.

Top Co-Authors

Avatar

Eiji Tanaka

University of Tokushima

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroki Mori

University of Tokushima

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Naozumi Ishimaru

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keiji Moriyama

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge