Takashi Kanamori
Tokyo Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Takashi Kanamori.
ChemBioChem | 2015
Takashi Kanamori; Hiroki Ohzeki; Yoshiaki Masaki; Akihiro Ohkubo; Mari Takahashi; Kengo Tsuda; Takuhiro Ito; Mikako Shirouzu; Kanako Kuwasako; Yutaka Muto; Mitsuo Sekine; Kohji Seio
We developed fluorescent turn‐on probes containing a fluorescent nucleoside, 5‐(benzofuran‐2‐yl)deoxyuridine (dUBF) or 5‐(3‐methylbenzofuran‐2‐yl)deoxyuridine (dUMBF), for the detection of single‐stranded DNA or RNA by utilizing DNA triplex formation. Fluorescence measurements revealed that the probe containing dUMBF achieved superior fluorescence enhancement than that containing dUBF. NMR and fluorescence analyses indicated that the fluorescence intensity increased upon triplex formation partly as a consequence of a conformational change at the bond between the 3‐methylbenzofuran and uracil rings. In addition, it is suggested that the microenvironment around the 3‐methylbenzofuran ring contributed to the fluorescence enhancement. Further, we developed a method for detecting RNA by rolling circular amplification in combination with triplex‐induced fluorescence enhancement of the oligonucleotide probe containing dUMBF.
Journal of the American Chemical Society | 2008
Masahiro Mizuta; Jun-ichi Banba; Takashi Kanamori; Ryuya Tawarada; Akihiro Ohkubo; Mitsuo Sekine; Kohji Seio
New nucleotide pairs applicable to formation of DNA triplexes were developed. We designed oligonucleotides incorporating 5-aryl deoxycytidine derivatives (dC5Ars) and cyclic deoxycytidine derivatives, dCPPP and dCPPI, having an expanded aromatic area, as the second strand. As pairing partners, two types of abasic residues (C3: propylene linker, phi: abasic base) were chosen. It was concluded that, when the 5-aryl-modified cytosine bases paired with the abasic sites in TFOs in a space-fitting manner, the stability of the resulting triplexes significantly increased. The recognition of C3 toward dC5Ars was selective because of the stacking interactions between their aromatic part and the nucleobases flanking the abasic site. These results indicate the potential utility of new nucleotide triplets for DNA triplex formation, which might expand the variety of structures and sequences and might be useful for biorelated fields such as DNA nanotechnologies.
Nucleic Acids Research | 2015
Akihiro Ohkubo; Kenji Yamada; Yu Ito; Kiichi Yoshimura; Koichiro Miyauchi; Takashi Kanamori; Yoshiaki Masaki; Kohji Seio; Hideya Yuasa; Mitsuo Sekine
A triplex-forming oligonucleotide (TFO) could be a useful molecular tool for gene therapy and specific gene modification. However, unmodified TFOs have two serious drawbacks: low binding affinities and high sequence-dependencies. In this paper, we propose a new strategy that uses a new set of modified nucleobases for four-base recognition of TFOs, and thereby overcome these two drawbacks. TFOs containing a 2’-deoxy-4N-(2-guanidoethyl)-5-methylcytidine (dgC) residue for a C-G base pair have higher binding and base recognition abilities than those containing 2’-OMe-4N-(2-guanidoethyl)-5-methylcytidine (2’-OMegC), 2’-OMe-4N-(2-guanidoethyl)-5-methyl-2-thiocytidine (2’-OMegCs), dgC and 4S-(2-guanidoethyl)-4-thiothymidine (gsT). Further, we observed that N-acetyl-2,7-diamino-1,8-naphtyridine (DANac) has a higher binding and base recognition abilities for a T-A base pair compared with that of dG and the other DNA derivatives. On the basis of this knowledge, we successfully synthesized a fully modified TFO containing DANac, dgC, 2’-OMe-2-thiothymidine (2’-OMesT) and 2’-OMe-8-thioxoadenosine (2’-OMesA) with high binding and base recognition abilities. To the best of our knowledge, this is the first report in which a fully modified TFO accurately recognizes a complementary DNA duplex having a mixed sequence under neutral conditions.
Organic Letters | 2013
Akihiro Ohkubo; Yasushi Kondo; Makoto Suzuki; Haruki Kobayashi; Takashi Kanamori; Yoshiaki Masaki; Kohji Seio; Kiyoshi Nagai; Mitsuo Sekine
U1 snRNA is an interesting biological tool for splicing correction and regulation of gene expression. However, U1 snRNA has never been chemically synthesized. In this study, the first chemical synthesis of U1snRNA and its analogues was carried out. Moreover, it was found that the binding affinity of the modified U1 snRNA with an ethylene glycol linkage to snurportin 1 (nuclear import adaptor) was as high as that of the unmodified RNA.
Bioorganic & Medicinal Chemistry | 2013
Kohji Seio; Takashi Kanamori; Munefumi Tokugawa; Hiroki Ohzeki; Yoshiaki Masaki; Hirosuke Tsunoda; Akihiro Ohkubo; Mitsuo Sekine
Single- and double-stranded oligodeoxynucleotides (ODNs) incorporating both 2-aminopurine (2AP) and an indole-fused cytosine analog (PPI) were prepared and studied for their fluorescence properties. PPI and 2AP can be excited simultaneously by irradiation at 300 nm, with emission observed at 500 nm for PPI and 370 nm for 2AP. We demonstrated the utility of these properties in the dual fluorescence labeling of ODNs giving well-separated emission peaks. In addition, both of the fluorescence signals of a doubly modified ODN changed independently, reflecting the local duplex formation at the regions containing 2AP or PPI. Potential applications of this strategy for the dual fluorescence labeling of oligonucleotides with 2AP and PPI include monitoring local structure alterations of functional nucleic acids and the multiplex detection of biologically important nucleic acids.
Bioorganic & Medicinal Chemistry | 2017
Takashi Kanamori; Takashi Sawamura; Tatsumi Tanaka; Izumi Sotokawa; Ryota Mori; Kotaro Inada; Akihiro Ohkubo; Shun-ichiro Ogura; Yasutoshi Murayama; Eigo Otsuji; Hideya Yuasa
Lanthanide nanoparticles (LNPs) conjugated with monosaccharides were synthesized as a photon energy-upconverting nanodevice with affinity to cancer cells. The conjugates were designed to selectively damage the cancer cells containing protoporphyrin IX, a photosensitizer endogenously synthesized from priorly administrated 5-aminolevlunic acid (ALA), by a highly tissue-penetrative near-infrared (NIR) irradiation. First of all, the affinities of monosaccharides toward cells (HeLa, RAW264.7, and MKN45) were assessed by a novel cell aggregation assay with trivalent monosaccharide-citric acid conjugates. As a result, HeLa exhibited high affinity for glucose, while RAW264.7 for glucose, galactose, mannose, and fucose. A similar cell-monosaccharide affinity was microscopically observed when the cells were mixed with monosaccharide-LNP conjugates and rinsed, in which the high affinity LNP probes luminesced on the cells. The high affinity monosaccharide-LNPs showed greater photodamaging effects than the unmodified LNP toward the corresponding cells, when the cells were pretreated with ALA and irradiated by NIR. This study demonstrates that carbohydrates can be used as selective ligands for cancer cells in a photodynamic therapy with LNP.
Organic Letters | 2015
Takahito Tomori; Yuya Miyatake; Yuta Sato; Takashi Kanamori; Yoshiaki Masaki; Akihiro Ohkubo; Mitsuo Sekine; Kohji Seio
Synthesis of peptide nucleic acids (PNAs) is reported with new pyridazine-type nucleobases: 3-aminopyridazine (aPz) and 1-aminophthalazine (aPh) as cytosine analogs, and pyridazin-3-one (Pz(O)) and phthalazin-1-one (Ph(O)) as thymine analogs. The PNAs having an aPz or a Pz(O) formed duplexes with each complementary oligodeoxynucleotide forming a base pair with G or A, respectively, as evaluated by using UV melting analyses and circular dichroism (CD) spectra.
Bioorganic & Medicinal Chemistry Letters | 2016
Kohji Seio; Yurie Ohno; Kentaro Ohno; Leo Takeshita; Takashi Kanamori; Yoshiaki Masaki; Mitsuo Sekine
Mismatch binding protein MutS binding to bulge structure in DNA duplexes was controlled by UV irradiation. 4-O-(2-Nitrobenzyl)thymidine or 4-O-[2-(2-nitrophenyl)propyl]thymidine was incorporated into DNA duplexes a bulged position. The MutS did not bind to the caged DNA duplexes but bound after removing the 2-nitrobenzyl or 2-(2-nitrophenyl)propyl group by photo-irradiation. By using photo-caged DNA duplex, we revealed that binding of MutS to the uncaged DNA downstream of the T7 RNA promoter weakly inhibited transcription by T7 RNA polymerase.
MedChemComm | 2015
Yoshiaki Masaki; Takeshi Inde; Tetsuya Nagata; Jun Tanihata; Takashi Kanamori; Kohji Seio; Shin'ichi Takeda; Mitsuo Sekine
Incorporation of 2′-O-methyl-2-thioribothymidine (s2Tm) into antisense oligoribonucleotides significantly enhanced the exon skipping activity in Duchenne muscular dystrophy model mice.
Bioorganic & Medicinal Chemistry Letters | 2013
Ken Yamada; Akihiro Ohkubo; Yousuke Esaka; Takashi Kanamori; Yoshiaki Masaki; Kohji Seio; Mitsuo Sekine
To increase base recognition capability and sensitivity, we propose the separation of a commonly used single-probe system for oligonucleotide analysis into a set of three probes: a fluorophore-labeled probe, a promoter probe, and a short probe. In this study, we found that the probes of only 4nt in length can selectively bind the corresponding gap site on complexes consisting of the target, fluorophore-labeled probe, and promoter probe, exhibiting a more than 14-fold difference in ligation between the matched and mismatched sequences. Moreover, we demonstrated that the immobilized short probes accurately recognized the sequences of the gap sites.