Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takashi Kiuchi is active.

Publication


Featured researches published by Takashi Kiuchi.


Nature | 2014

A single female-specific piRNA is the primary determiner of sex in the silkworm

Takashi Kiuchi; Hikaru Koga; Munetaka Kawamoto; Keisuke Shoji; Hiroki Sakai; Yuji Arai; Genki Ishihara; Shinpei Kawaoka; Sumio Sugano; Toru Shimada; Yutaka Suzuki; Masataka G. Suzuki; Susumu Katsuma

The silkworm Bombyx mori uses a WZ sex determination system that is analogous to the one found in birds and some reptiles. In this system, males have two Z sex chromosomes, whereas females have Z and W sex chromosomes. The silkworm W chromosome has a dominant role in female determination, suggesting the existence of a dominant feminizing gene in this chromosome. However, the W chromosome is almost fully occupied by transposable element sequences, and no functional protein-coding gene has been identified so far. Female-enriched PIWI-interacting RNAs (piRNAs) are the only known transcripts that are produced from the sex-determining region of the W chromosome, but the function(s) of these piRNAs are unknown. Here we show that a W-chromosome-derived, female-specific piRNA is the feminizing factor of B. mori. This piRNA is produced from a piRNA precursor which we named Fem. Fem sequences were arranged in tandem in the sex-determining region of the W chromosome. Inhibition of Fem-derived piRNA-mediated signalling in female embryos led to the production of the male-specific splice variants of B. mori doublesex (Bmdsx), a gene which acts at the downstream end of the sex differentiation cascade. A target gene of Fem-derived piRNA was identified on the Z chromosome of B. mori. This gene, which we named Masc, encoded a CCCH-type zinc finger protein. We show that the silencing of Masc messenger RNA by Fem piRNA is required for the production of female-specific isoforms of Bmdsx in female embryos, and that Masc protein controls both dosage compensation and masculinization in male embryos. Our study characterizes a single small RNA that is responsible for primary sex determination in the WZ sex determination system.


Development Growth & Differentiation | 2014

Recent progress in genome engineering techniques in the silkworm, Bombyx mori.

Takaaki Daimon; Takashi Kiuchi; Yoko Takasu

Rapid advances in genome engineering tools, such as zinc finger nucleases (ZFNs), transcription activator‐like effector nucleases (TALENs), and the clustered regularly interspaced palindromic repeats/CRISPR‐associated (CRISPR/Cas) system, have enabled efficient gene knockout experiments in a wide variety of organisms. Here, we review the recent progress in targeted gene disruption techniques in the silkworm, Bombyx mori. Although efficiency of targeted mutagenesis was very low in an early experiment using ZFNs, recent studies have shown that TALENs can induce highly efficient mutagenesis of desired target genes in Bombyx. Notably, mutation frequencies induced by TALENs can reach more than 50% of G0 gametes. Thus, TALENs can now be used as a standard tool for gene targeting studies, even when mutant phenotypes are unknown. We also propose guidelines for experimental design and strategy for knockout experiments in Bombyx. Genome editing technologies will greatly increase the usefulness of Bombyx as a model for lepidopteran insects, the major agricultural pests, and lead to sophisticated breeding of Bombyx for use in sericulture and biotechnology.


RNA | 2012

A role for transcription from a piRNA cluster in de novo piRNA production

Shinpei Kawaoka; Hiroshi Mitsutake; Takashi Kiuchi; Maki Kobayashi; Mayu Yoshikawa; Yutaka Suzuki; Sumio Sugano; Toru Shimada; Jun Kobayashi; Yukihide Tomari; Susumu Katsuma

PIWI-interacting RNAs (piRNAs) are at the heart of the nucleic acid-based adaptive immune system against transposons in animal gonads. To date, how the piRNA pathway senses an element as a substrate and how de novo piRNA production is initiated remain elusive. Here, by utilizing a GFP transgene, we screened and obtained clonal silkworm BmN4 cell lines producing massively amplified GFP-derived piRNAs capable of silencing GFP in trans. In multiple independent cell lines where GFP expression was silenced by the piRNA pathway, we detected a common transcript from an endogenous piRNA cluster, in which a part of the cluster is uniquely fused with an antisense GFP sequence. Bioinformatic analyses suggest that the fusion transcript is a source of GFP primary piRNAs. Our data implicate a role for transcription from a piRNA cluster in initiating de novo piRNA production against a new insertion.


Insect Biochemistry and Molecular Biology | 2013

Mutation of a novel ABC transporter gene is responsible for the failure to incorporate uric acid in the epidermis of ok mutants of the silkworm, Bombyx mori

Lingyan Wang; Takashi Kiuchi; Tsuguru Fujii; Takaaki Daimon; M. S. Li; Yutaka Banno; Shingo Kikuta; Takahiro Kikawada; Susumu Katsuma; Toru Shimada

ok mutants of the silkworm, Bombyx mori, exhibit highly translucent larval skin resulting from the inability to incorporate uric acid into the epidermal cells. Here we report the identification of a gene responsible for the ok mutation using positional cloning and RNAi experiments. In two independent ok mutant strains, we found a 49-bp deletion and a 233-bp duplication, respectively, in mRNAs of a novel gene, Bm-ok, which encodes a half-type ABC transporter, each of which results in translation of a truncated protein in each mutant. Although the Bm-ok sequence was homologous to well-known transporter genes, white, scarlet, and brown in Drosophila, the discovery of novel orthologs in the genomes of lepidopteran, hymenopteran, and hemipteran insects identifies it as a member of a new distinct subfamily of transporters. Embryonic RNAi of Bm-ok demonstrated that repression of Bm-ok causes a translucent phenotype in the first-instar silkworm larva. We discuss the possibility that Bm-ok forms a heterodimer with another half-type ABC transporter, Bmwh3, and acts as a uric acid transporter in the silkworm epidermis.


PLOS Pathogens | 2015

The Endosymbiotic Bacterium Wolbachia Selectively Kills Male Hosts by Targeting the Masculinizing Gene

Takahiro Fukui; Munetaka Kawamoto; Keisuke Shoji; Takashi Kiuchi; Sumio Sugano; Toru Shimada; Yutaka Suzuki; Susumu Katsuma

Pathogens are known to manipulate the reproduction and development of their hosts for their own benefit. Wolbachia is an endosymbiotic bacterium that infects a wide range of insect species. Wolbachia is known as an example of a parasite that manipulates the sex of its hosts progeny. Infection of Ostrinia moths by Wolbachia causes the production of all-female progeny, however, the mechanism of how Wolbachia accomplishes this male-specific killing is unknown. Here we show for the first time that Wolbachia targets the host masculinizing gene of Ostrinia to accomplish male-killing. We found that Wolbachia-infected O. furnacalis embryos do not express the male-specific splice variant of doublesex, a gene which acts at the downstream end of the sex differentiation cascade, throughout embryonic development. Transcriptome analysis revealed that Wolbachia infection markedly reduces the mRNA level of Masc, a gene that encodes a protein required for both masculinization and dosage compensation in the silkworm Bombyx mori. Detailed bioinformatic analysis also elucidated that dosage compensation of Z-linked genes fails in Wolbachia-infected O. furnacalis embryos, a phenomenon that is extremely similar to that observed in Masc mRNA-depleted male embryos of B. mori. Finally, injection of in vitro transcribed Masc cRNA into Wolbachia-infected embryos rescued male progeny. Our results show that Wolbachia-induced male-killing is caused by a failure of dosage compensation via repression of the host masculinizing gene. Our study also shows a novel strategy by which a pathogen hijacks the host sex determination cascade.


Insect Biochemistry and Molecular Biology | 2011

Mutations in an amino acid transporter gene are responsible for sex-linked translucent larval skin of the silkworm, Bombyx mori.

Takashi Kiuchi; Yutaka Banno; Susumu Katsuma; Toru Shimada

The sex-linked translucent (os) mutation in the silkworm, Bombyx mori, confers slightly translucent larval skin resulting from a decrease in the incorporation of uric acid into epidermal cells. By positional cloning, we narrowed a region linked to the os phenotype to approximately 157 kb located on scaffold Bm_scaf72 on the Z chromosome (chromosome 1). The region contained four gene models. Sequencing analysis revealed that one of the candidate genes had a 7-bp deletion in the coding region. We also found a 111-bp deletion or single-nucleotide substitution in the same gene using independent os mutant strains. Because all the mutations caused the generation of abnormal transcripts followed by translation of a truncated protein, we conclude that the mutation of this candidate gene is responsible for the translucent larval skin of the os mutant. Sequence analysis indicated that the gene responsible for the os mutation had homology to amino acid transporters of the solute carrier family of proteins. Our results suggest that solute carrier proteins are involved in uric acid transport in insects and other invertebrates.


Genome | 2013

Reduced expression of the dysbindin-like gene in the Bombyx mori ov mutant exhibiting mottled translucency of the larval skin

Lingyan Wang; Takashi Kiuchi; Tsuguru Fujii; Takaaki Daimon; M. S. Li; Yutaka Banno; Susumu Katsuma; Toru Shimada

The ov (mottled translucent of Var) mutant, an oily mutant of Bombyx mori, exhibits mottled translucent skin with a varying degree of transparency among individuals. By linkage analysis of 2112 backcross individuals using polymorphic DNA markers, we successfully mapped a 179-kb region of chromosome 20 responsible for the ov phenotype. This region contains nine predicted genes. We compared the mRNA expression of these nine genes between the wild type and mutants and found that the expression of one of them, Bmdysb, was strikingly decreased in the epidermis of ov as well as its allelomorph, ov(p). Moreover, its expression level was well correlated with the degree of transparency among individuals. Bmdysb was homologous to DTNBP1 encoding human dysbindin, a subunit of the biogenesis of lysosome-related organelles complex-1. Our results suggest that the translucent skin may be due to repression of Bmdysb in the ov mutants and that Bmdysb plays an important role in the formation and accumulation of urate granules in the silkworm epidermis.


Journal of Insect Physiology | 2008

Effects of high temperature on the hemocyte cell cycle in silkworm larvae

Takashi Kiuchi; Fugaku Aoki; Masao Nagata

To understand the inhibitory effects of high temperature on insect growth at the cellular level, we investigated the influence of high temperature on the proliferation and division of larval hemocytes in the silkworm, Bombyx mori. Although the total number of hemocytes in the larval body increased enormously over time at 26 degrees C, no increase was observed at 38 degrees C. The number of mitotic hemocytes in circulation increased between days 1 and 2 of the fourth larval stage at 26 degrees C, whereas fewer hemocytes were observed at 38 degrees C. Laser scanning cytometry revealed that the DNA content of hemocytes collected from the fourth-stadium larvae was predominantly 2C, 4C, and 8C, and the proportion of each type of hemocyte changed dynamically with development during the fourth instar. Specifically, the proportion of hemocytes with a higher DNA content increased gradually during the feeding phase then decreased during the molting phase at 26 degrees C; in contrast, no decrease was observed at 38 degrees C. The heat-induced accumulation of 8C hemocytes was mainly detected in granulocytes and plasmatocytes. These data suggest that high temperatures induce a G(2) arrest in larval hemocytes.


Journal of Invertebrate Pathology | 2013

Silkworm plasmatocytes are more resistant than other hemocyte morphotypes to Bombyx mori nucleopolyhedrovirus infection.

Takanori Hori; Takashi Kiuchi; Toru Shimada; Masao Nagata; Susumu Katsuma

Differences in the viral susceptibility of multiple insect hemocyte morphotypes have not been investigated to date. In this study, a Bombyx mori nucleopolyhedrovirus (BmNPV) derivative possessing a Drosophila hsp70 promoter-driven green fluorescent protein (GFP) gene was used to observe NPV tropism of B. mori larval hemocytes. The experiments clearly revealed that there were fewer GFP-positive plasmatocytes than those observed in other types of hemocytes, such as granulocytes, oenocytoids, and spherulocytes, when infected via the intrahemocoelic or oral route. Our results indicate that silkworm plasmatocytes are more resistant than other hemocyte morphotypes to BmNPV infection.


Journal of Biological Chemistry | 2015

Two Conserved Cysteine Residues Are Required for the Masculinizing Activity of the Silkworm Masc Protein

Susumu Katsuma; Yudai Sugano; Takashi Kiuchi; Toru Shimada

Background: The functional domains of the silkworm masculinizing protein Masc are unknown. Results: The essential region and residues involved in the masculinizing activity of the Masc protein are identified. Conclusion: Masc functions as the masculinizing protein via its C-terminal region but not two zinc finger domains in the N-terminal region. Significance: Our study suggests the mode of action of the masculinizing protein. We have recently discovered that the Masculinizer (Masc) gene encodes a CCCH tandem zinc finger protein, which controls both masculinization and dosage compensation in the silkworm Bombyx mori. In this study, we attempted to identify functional regions or residues that are required for the masculinizing activity of the Masc protein. We constructed a series of plasmids that expressed the Masc derivatives and transfected them into a B. mori ovary-derived cell line, BmN-4. To assess the masculinizing activity of the Masc derivatives, we investigated the splicing patterns of B. mori doublesex (Bmdsx) and the expression levels of B. mori IGF-II mRNA-binding protein, a splicing regulator of Bmdsx, in Masc cDNA-transfected BmN-4 cells. We found that two zinc finger domains are not required for the masculinizing activity. We also identified that the C-terminal 288 amino acid residues are sufficient for the masculinizing activity of the Masc protein. Further detailed analyses revealed that two cysteine residues, Cys-301 and Cys-304, in the highly conserved region among lepidopteran Masc proteins are essential for the masculinizing activity in BmN-4 cells. Finally, we showed that Masc is a nuclear protein, but its nuclear localization is not tightly associated with the masculinizing activity.

Collaboration


Dive into the Takashi Kiuchi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge