Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takashi Miyano is active.

Publication


Featured researches published by Takashi Miyano.


Nature Cell Biology | 2008

Unified mode of centromeric protection by shugoshin in mammalian oocytes and somatic cells

Jibak Lee; Tomoya S. Kitajima; Yuji Tanno; Kayo Yoshida; Takashi Morita; Takashi Miyano; Masashi Miyake; Yoshinori Watanabe

Reductional chromosome segregation in germ cells, where sister chromatids are pulled to the same pole, accompanies the protection of cohesin at centromeres from separase cleavage. Here, we show that mammalian shugoshin Sgo2 is expressed in germ cells and is solely responsible for the centromeric localization of PP2A and the protection of cohesin Rec8 in oocytes, proving conservation of the mechanism from yeast to mammals. However, this role of Sgo2 contrasts with its mitotic role in protecting centromeric cohesin only from prophase dissociation, but never from anaphase cleavage. We demonstrate that, in somatic cells, shugoshin colocalizes with cohesin in prophase or prometaphase, but their localizations become separate when centromeres are pulled oppositely at metaphase. Remarkably, if tension is artificially removed from the centromeres at the metaphase–anaphase transition, cohesin at the centromeres can be protected from separase cleavage even in somatic cells, as in germ cells. These results argue for a unified view of centromeric protection by shugoshin in mitosis and meiosis.


Science | 2008

The Maternal Nucleolus Is Essential for Early Embryonic Development in Mammals

Sugako Ogushi; C. Palmieri; Helena Fulka; Mitinori Saitou; Takashi Miyano; Josef Fulka

With fertilization, the paternal and maternal contributions to the zygote are not equal. The oocyte and spermatozoon are equipped with complementary arsenals of cellular structures and molecules necessary for the creation of a developmentally competent embryo. We show that the nucleolus is exclusively of maternal origin. The maternal nucleolus is not necessary for oocyte maturation; however, it is necessary for the formation of pronuclear nucleoli after fertilization or parthenogenetic activation and is essential for further embryonic development. In addition, the nucleolus in the embryo produced by somatic cell nuclear transfer originates from the oocyte, demonstrating that the maternal nucleolus supports successful embryonic development.


Reproduction | 2007

Regulation of chromatin and chromosome morphology by histone H3 modifications in pig oocytes

Hong-Thuy Bui; Nguyen Van Thuan; Satoshi Kishigami; Sayaka Wakayama; Takafusa Hikichi; Hiroshi Ohta; Eiji Mizutani; Emi Yamaoka; Teruhiko Wakayama; Takashi Miyano

Oocyte growth, maturation, and activation are complex processes that include transcription, heterochromatin formation, chromosome condensation and decondensation, two consecutive chromosome separations, and genomic imprinting. The objective of this study was to investigate changes in histone H3 modifications in relation to chromatin/chromosome morphology in pig oocytes during their growth, maturation, and activation. During the growth phase, histone H3 was acetylated at lysines 9, 14, and 18 (K9, K14, and K18), and became methylated at K9 when the follicles developed to the antral stage (oocyte diameter, 90 mum). When the fully grown oocytes (diameter, 120 mum) started their maturation, histone H3 became phosphorylated at serine 28 (S28) and then at S10, and deacetylated at K9, K14, and K18 as the chromosomes condensed. After the electroactivation of mature oocytes, histone H3 was reacetylated and dephosphorylated concomitant with the decondensation of the chromosomes. Histone H3 kinase activity increased over a similar time course to that of the phosphorylation of histone H3-S28 during oocyte maturation, and this activity decreased as histone H3-S10 and H3-S28 began to be dephosphorylated after the activation of the mature oocytes. These results suggest that the chromatin morphology of pig oocytes is regulated by the acetylation/deacetylation and the phosphorylation/dephosphorylation of histone H3, and the phosphorylation of histone H3 is the key event in meiotic chromosome condensation in oocytes. The inhibition of histone deacetylase with trichostatin A (TSA) inhibited the deacetylation and phosphorylation of histone H3, and chromosome condensation. Therefore, the deacetylation of histone H3 is thought to be required for its phosphorylation in meiosis. Although histone H3 acetylation and phosphorylation were reversible, the histone methylation that was established during the oocyte growth phase was stable throughout the course of oocyte maturation and activation.


Cell Cycle | 2006

Loss of Rec8 from chromosome arm and centromere region is required for homologous chromosome separation and sister chromatid separation, respectively, in mammalian meiosis.

Jibak Lee; Konosuke Okada; Sugako Ogushi; Takashi Miyano; Masashi Miyake; Masakane Yamashita

Chromosome separation in meiosis I is different from those in mitosis and meiosis II inthat homologs separate from each other in the former while sisters do so in the latter. Weshow here that meiosis-specific cohesin subunit Rec8 in mouse oocytes showsessentially the same pattern of localization to those reported in yeasts1-3 and mammalianspermatocytes4,5; Rec8 along chromosome arm (armRec8) is lost at the metaphaseI-to-anaphase I transition, although centromeric Rec8 (cenRec8) is maintained until theonset of anaphase II. Suppression of the loss of armRec8 by microinjection of anti-Rec8antibody into the oocytes inhibits homolog separation but not the first polar bodyemission (cytokinesis). Similarly, the injection of anti-Rec8 antibody into metaphase IIoocytes prevents sister separation in anaphase II after oocyte activation. These datademonstrate that the loss of armRec8 and cenRec8 is required for separation ofhomologs and sisters, respectively, but both are not required for other late mitotic eventssuch as spindle elongation and cytokinesis in mouse oocytes. Further, we propose thatloss of armRec8 (homolog separation) and cytokinesis are suppressed until anaphase Iby Securin whose destruction is regulated by spindle checkpoint-proteasome pathway,and that Topoisomerase II is required for homolog separation independently from suchpathway.


Biology of Reproduction | 2004

Activation of p38 MAPK During Porcine Oocyte Maturation

Luis Gerardo Villa-Diaz; Takashi Miyano

Abstract The p38 MAPK is a member of the mitogen-activated protein kinase (MAPK) family that participates in a signaling cascade in response to cytokines and stress in somatic cells. The present study was designed to investigate the expression and possible function of p38 MAPK in porcine oocytes during maturation. In immunoblots, p38 MAPK was detected in oocytes and cumulus cells. Its activity was determined during oocyte maturation in vitro by the phosphorylation of its substrate, activated transcription factor 2. As ERK1/2, oocyte p38 MAPK became active around germinal vesicle breakdown (GVBD) and maintained activity until metaphase II (MII). Immunofluorescent microscopy showed phosphorylated p38 MAPK accumulated in the nucleus before GVBD and localized in the cytoplasm and around chromosomes from metaphase I (MI) to MII. In cultured cumulus-oocyte complexes, a specific inhibitor of p38 MAPK, SB203580, inhibited phosphorylation of p38 MAPK in cumulus cells and blocked both FSH-induced cumulus expansion and meiotic resumption of oocytes. During spontaneous meiotic resumption of denuded oocytes, SB203580 did not affect GVBD, but it significantly decreased the number of oocytes reaching MII and conversely increased the number of oocytes arrested at MI. These results suggest that p38 MAPK in porcine oocytes becomes active around GVBD, remains active through MI to MII, and has a role in MI-MII transition, and that cumulus p38 MAPK might be involved in FSH-induced meiotic resumption of oocytes.


Biology of Reproduction | 2004

Involvement of Histone H3 (Ser10) Phosphorylation in Chromosome Condensation Without Cdc2 Kinase and Mitogen-Activated Protein Kinase Activation in Pig Oocytes

Hong-Thuy Bui; Emi Yamaoka; Takashi Miyano

Abstract When oocytes resume meiosis, chromosomes start to condense and Cdc2 kinase becomes activated. However, recent findings show that the chromosome condensation does not always correlate with the Cdc2 kinase activity in pig oocytes. The objectives of this study were to examine 1) the correlation between chromosome condensation and histone H3 phosphorylation at serine 10 (Ser10) during the meiotic maturation of pig oocytes and 2) the effects of protein phosphatase 1/2A (PP1/ PP2A) inhibitors on the chromosome condensation and the involvement of Cdc2 kinase, MAP kinase, and histone H3 kinase in this process. The phosphorylation of histone H3 (Ser10) was first detected in the clump of condensed chromosomes at the diakinesis stage and was maintained until metaphase II. The kinase assay showed that histone H3 kinase activity was low in oocytes at the germinal vesicle stage (GV) and increased at the diakinesis stage and that high activity was maintained until metaphase II. Treatment of GV-oocytes with okadaic acid (OA) or calyculin-A (CL-A), the PP1/PP2A inhibitors, induced rapid chromosome condensation with histone H3 (Ser10) phosphorylation after 2 h. Both histone H3 kinase and MAP kinase were activated in the treated oocytes, although Cdc2 kinase was not activated. In the oocytes treated with CL-A and the MEK inhibitor U0126, neither Cdc2 kinase nor MAP kinase were activated and no oocytes underwent germinal vesicle breakdown (GVBD), although histone H3 kinase was still activated and the chromosomes condensed with histone H3 (Ser10) phosphorylation. These results suggest that the phosphorylation of histone H3 (Ser10) occurs in condensed chromosomes during maturation in pig oocytes. Furthermore, the chromosome condensation is correlated with histone H3 kinase activity but not with Cdc2 kinase and MAP kinase activities.


Reproduction | 2007

Oocyte growth and follicular development in KIT-deficient Fas-knockout mice.

Mohammad Moniruzzaman; Kazuhiro Sakamaki; Yukiko Akazawa; Takashi Miyano

In mammals, oocyte growth and follicular development are known to be regulated by KIT, a tyrosine kinase receptor. Fas is a member of the death receptor family inducing apoptosis. Here, we investigated germ cell survival, oocyte growth and follicular development in KIT-deficient (Wv/Wv:Fas+/+), Fas-deficient (+/+:Fas-/-), and both KIT- and Fas-deficient (Wv/Wv:Fas-/-) mice during fetal and postnatal periods. Further, the ovaries of these mice were transplanted in immunodeficient mice to compare oocyte growth and follicular development under a condition isolated from the extraovarian effects of KIT- and Fas-deficiency. Higher numbers of germ cells were found in the fetal and postnatal ovaries of Fas-deficient mice than in the same-aged wild-type mice. In KIT-deficient mice, ovaries at 13 days postcoitum (dpc) contained 1106+/-72 (n=3) germ cells, but the ovaries contained no oocytes after birth. Twenty-one days after transplantation of the ovaries at 13 dpc, no oocytes/germ cells were found. A higher number of germ cells (3843+/-108; n=3) were observed in the Wv/Wv:Fas-/- genotypes than in Wv/Wv:Fas+/+ mice at 13 dpc. Furthermore, Wv/Wv:Fas-/- mice contained 528+/-91 (n=3) oocytes at 2 days, and follicles developed to the antral stage at 14 days of age. After transplantation of fetal and neonatal ovaries from Wv/Wv:Fas-/- mice, increased numbers of growing oocytes and developing follicles were obtained compared with those in 14-day old ovaries in vivo. These results show that oocytes grow and follicles develop without KIT signaling, although KIT might be essential for the survival of germ cells/oocytes in mice.


Theriogenology | 2009

Development of vitrified porcine primordial follicles in xenografts

Mohammad Moniruzzaman; Rong-Mei Bao; Hiroaki Taketsuru; Takashi Miyano

The objective was to cryopreserve porcine primordial follicles by vitrification and to assess the development of these follicles in xenografts. Ovarian tissues containing primordial follicles were collected from neonatal (15-d-old) piglets. They were vitrified in modified tissue culture medium (TCM)-199 containing 15% (v/v) ethylene glycol, 15% (v/v) dimethylsulfoxide, 20% (v/v) fetal calf serum, and 0, 0.25, or 0.5M sucrose. After 1 wk of storage in liquid nitrogen (LN(2)), the tissues were warmed, and the morphology of follicles and oocytes was examined histologically. After vitrification in sucrose-free medium, there were 50+/-2 (mean+/-SEM; n=10) follicles per tissue, in contrast with 108+/-10 (n=10) in fresh tissues. Losses were attributed to puncturing oocytes during the vitrification-warming process, as oocytes were apparently normal after treatment of the sucrose-free vitrification solution without plunging into LN(2). When tissues were vitrified in sucrose-supplemented medium, loss of oocytes decreased (P<0.05). However, the number of abnormal oocytes having nuclear shrinkage was increased (P<0.05) by the addition of 0.5M sucrose; this occurred in a small number of oocytes treated with sucrose-supplemented vitrification solutions without vitrification. After 2 mo of xenografting of vitrified-warmed tissues in SCID (severe combined immune deficiency) mice, primordial follicles developed to the secondary stage (accompanied by oocyte growth), whereas there was development to the antral stage in xenografts of fresh tissues. In conclusion, primordial follicles from neonatal pigs maintained their developmental ability after vitrification and warming, although their developmental rate was slower than that of the fresh control in xenografts.


Theriogenology | 2010

Development of vitrified bovine secondary and primordial follicles in xenografts

Rong-Mei Bao; Eriko Yamasaka; Mohammad Moniruzzaman; Atsushi Hamawaki; Motoichi Yoshikawa; Takashi Miyano

The objective was to evaluate the effect of various vitrification conditions on the morphology of bovine secondary and primordial follicles, and to use xenografting to confirm their developmental ability. Secondary follicles were placed in vitrification solution containing 15% (v:v) ethylene glycol (EG), 15% (v:v) dimethyl sulfoxide (DMSO), 20% (v:v) fetal calf serum (FCS), and 0, 0.25, or 0.5 M sucrose at room temperature for 1 or 30 min, or at 4 degrees C for 30 min before being plunged into liquid nitrogen (LN(2)). Ovarian tissues with primordial follicles were equilibrated in a solution containing 7.5% EG, 7.5% DMSO, and 20% FCS for 5 or 15 min, and then treated with a vitrification solution (15% EG, 15% DMSO, and 20% FCS) containing 0 or 0.5 M sucrose at room temperature for 1 min, and then plunged into LN(2). One week later, follicles and tissues were warmed, and morphology assessed histologically. Secondary follicles vitrified in sucrose-free solution had more oocytes with shrinkage of the nucleus and abnormal cytoplasm relative to those vitrified in sucrose-containing solution. When primordial follicles were equilibrated for 5 min and vitrified in sucrose-free solution, the percentage of morphologically normal primordial follicles was higher than in the other groups (P < 0.05). After 4 wk and 6 mo of xenografting of vitrified-warmed secondary and primordial follicles, respectively, in SCID mice, follicles developed to the antral stage and oocytes grew. In conclusion, bovine secondary follicles were successfully cryopreserved in sucrose-containing vitrification solutions and maintained their ability to develop to the antral stage and grow oocytes, whereas primordial follicles vitrified in sucrose-free solution maintained their morphology and developed to the antral stage, with oocyte growth.


Theriogenology | 2011

A combination of FSH and dibutyryl cyclic AMP promote growth and acquisition of meiotic competence of oocytes from early porcine antral follicles

Ilse Silvia Cayo-Colca; Yukiko Yamagami; Thuy-Chau Phan; Takashi Miyano

Growing porcine oocytes from early antral follicles (1.2-1.5 mm in diameter) do not mature to metaphase II (MII, 4%) under culture conditions which supported maturation (MII, 95%) of fully grown oocytes from large (4-6 mm) antral follicles. We hypothesized that FSH and dbcAMP supported growth and acquisition of meiotic competence. Growing oocytes (113.0 ± 0.4 μm, mean ± SEM) were cultured for 5 d in medium supplemented with 1 mM dbcAMP, 0.01 IU/mL FSH or both; in these media, oocytes reached, 120.5 ± 0.4, 123.5 ± 0.4 and 125.7 ± 0.2 μm, respectively, after 5 d, and then were matured in vitro for 48 h. Oocytes remained enclosed by cumulus cells when cultured with FSH (82%) or both FSH and dbcAMP (80%), but not with dbcAMP alone (0%). Furthermore, oocytes cultured with FSH maintained trans-zonal projections of cumulus cells. Oocytes remained at the GV stage at higher rates when cultured with dbcAMP and FSH (99%), or dbcAMP (97%), than with FSH (64%), or without either (75%). Following in vitro maturation, oocytes reached MII after in vitro growth with dbcAMP (19%), FSH (11%), or both (68%). When oocytes were cultured with both FSH and dbcAMP, activation of Cdc2 and MAP kinases in growing oocytes was similar to fully grown oocytes. In conclusion, growing porcine oocytes grew and acquired meiotic competence in medium supplemented with dbcAMP and FSH; the former maintained oocytes in meiotic arrest, whereas the latter maintained trans-zonal projections of cumulus cells to oocytes during in vitro growth culture.

Collaboration


Dive into the Takashi Miyano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Josef Fulka

Czechoslovak Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge