Takashi Shiroyama
Mie University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Takashi Shiroyama.
Neuroscience | 1997
C.D Richards; Takashi Shiroyama; S.T Kitai
Neurons in the substantia nigra pars reticulata and pars compacta of the rat were studied using a combination of intracellular electrophysiological recording in in vitro and subsequent immunocytochemical double and triple labelling techniques. The neurons recorded in the pars reticulata were identified as either GABA or dopamine neurons: neurons were considered to be GABA neurons if they were immunopositive for glutamate decarboxylase, whereas those neurons which were immunopositive for tyrosine hydroxylase were considered to be dopaminergic. The GABA neurons had short duration action potentials (0.45+/-0.03 ms halfwidth), no apparent rectifying currents, no low threshold calcium spikes, were spontaneously active (7.4+/-3.7 Hz), and could maintain high firing rates. The dopamine neurons had long duration action potentials (1.49+/-0.10 ms), displayed both anomalous inward and transient outward rectifying currents, and more than half (12/17 neurons) displayed a low threshold calcium spike. Their spontaneous firing rate was lower than that of the GABA neurons (2.3+/-1.0 Hz), and they displayed strong frequency adaptation. Morphological reconstruction of neurobiotin-filled neurons revealed that the pars reticulata GABA neurons had more extensive local dendritic arborization than the dopamine neurons from either the pars reticulata or the pars compacta. All of the neurons recorded from the pars compacta were dopamine neurons; they were found not to be different either electrophysiologically or morphologically from pars reticulata dopamine neurons. The electrophysiology of the GABA neurons suggests that input activity is translated linearly to spike frequency. These GABA neurons probably represent the projection neurons of the pars reticulata, and it is thus likely that this basal ganglia output is frequency coded. The close similarity between the dopamine neurons in the pars compacta, which give rise to the nigrostriatal pathway, and those in the pars reticulata supports the notion that the dopamine neurons in these two regions are part of the same neuronal population.
The Journal of Comparative Neurology | 1996
K Takakusaki; Takashi Shiroyama; T. Yamamoto; S.T Kitai
Morphological features of rat pedunculopontine projection neurons were investigated in in vitro preparation by using intracellular labeling with biocytin combined with choline acetyltransferase (ChAT) immunohistochemistry. These neurons were classified into two types (Type I and II), based on their electrical membrane properties: Type I had low‐threshold Ca2+ spikes, and Type II had A‐current. All Type I neurons (n = 17) were ChAT immunonegative (ChAT−). Type II neurons were either ChAT immunopositive (ChAT+; n = 49) or ChAT− (n = 20). In terms of topography in the tegmental pedunculopontine nucleus (PPN), Type I neurons were dispersed throughout the extent of the nucleus, whereas Type II neurons tended to be located more in the rostral and middle sections. Both Type I and II neurons consisted of small (long axis <20 μm), medium (20–35 μm), and large (>35 μm) cells. The small cells were round or oval; medium cells were round, triangular, or fusiform; and the large cells were primarily fusiform in shape. In terms of the soma size, there was a difference in Type I (15–38 μm) and Type II (11–50 μm) neurons, but no significant difference was found between Type II ChAT− and ChAT− cells. Both types of neurons had three to six primary dendrites, but the dendritic field was more prominent in Type II neurons. Most of the axons originated from one of the primary dendrites, which gave off axon collaterals, some of which projected out of the nucleus. The intrinsic collaterals were thin and branched party within the dendritic field of the parent cell. The extrinsic collaterals were thicker and could be grouped into three categories: 1) collaterals arborizing in the substantia nigra; 2) collaterals ascending mainly toward the thalamus, pretectal, and tectal area; and 3) collaterals descending toward the mesencephalic and/or pontine reticular formation. It was noted that the collaterals of both ChAT+ and ChAT− neurons were traced into the substantia nigra. There was no significant difference in antidromic latencies between Type I (m = 1.47 msec) and Type II (m = 1.36 msec) neurons following electrical stimulation of the substantia nigra.
Neuroscience | 1998
E.M Sorenson; Takashi Shiroyama; S.T Kitai
Previous studies have shown that application of nicotinic agonists in the substantia nigra pars compacta increases the firing rate of dopaminergic neurons. We have used intracellular recordings to show that the response of these neurons to nicotine is postsynaptic, since it persists in the presence of low-calcium buffer containing tetrodotoxin. Burst firing in the presence of nicotine was not observed. The presence of postsynaptic nicotinic receptors was confirmed by immunohistochemical localization of the alpha4 nicotinic receptor subunit on dendrites in the substantia nigra pars compacta. The majority of tyrosine hydroxylase-immunopositive neurons in the substantia nigra pars compacta were also immunopositive for the alpha4 subunit. Immunohistochemical localization of the alpha4 and beta2 subunits in adjacent brain sections produced similar patterns of staining. Electron micrographs clearly indicated the presence of alpha4 subunit at postsynaptic densities. The predominant role of nicotinic receptors in the central nervous system has been suggested to be the presynaptic modulation of neurotransmitter release [McGehee D. S. and Role L. W. (1995) A. Rev. Physiol. 57, 521-546]. Although several postsynaptic nicotinic responses have also been reported in the literature, it is unclear as to whether the postsynaptic nicotinic receptors mediating responses to exogenously applied agonists are involved in synaptic transmission. From our electrophysiological and immunohistochemical results, we conclude that alpha4-containing nicotinic receptors are found at synapses on dopaminergic neurons. These synapses are similar to the cholinergic synapses described at these neurons, suggesting that nicotinic receptors are important in modulating the excitability of dopaminergic neurons by direct synaptic transmission.
The Journal of Comparative Neurology | 1999
Takashi Shiroyama; Tetsuro Kayahara; Yukihiko Yasui; Junichi Nomura; Katsuma Nakano
Injections of the anterograde axonal tracer Phaseolus vulgaris leucoagglutinin were made into individual nuclei of the vestibular nuclear complex of the rat to identify specific projections to the thalamus. The results showed that the superior vestibular nucleus and the medial vestibular nucleus, especially its rostral‐to‐middle parts, project to the lateral part of the parafascicular thalamic nucleus (corresponding to the centromedian nucleus in primates), the transitional zone between the ventrolateral thalamic nucleus (VL) and the ventral posterolateral thalamic nucleus (VPL) (the region considered to be the nucleus ventralis intermedius of Vogt [Vogt C. 1909. La myeloarchitecture du thalamus du cercopitheque. J Psychol Neurol 12:285–324.]), the lateral part of the centrolateral thalamic nucleus and the dorsal part of the caudal VL; the spinal vestibular nucleus projects to the lateral part of the parafascicular thalamic nucleus, the transitional zone between the VL and the VPL, the caudal part of the ventrobasal complex, and the suprageniculate thalamic nucleus. These results suggest that vestibular information is transmitted not only to the cerebral cortex (mainly area 2V and area 3a) but also to the striatum. They also suggest that vestibular activity may affect gaze control by means of vestibulothalamocortical pathway in addition to vestibulo‐ocular and vestibulopremotoneuronal routes. J. Comp. Neurol. 407:318–332, 1999.
Neuroscience | 1997
K Takakusaki; Takashi Shiroyama; S.T Kitai
Two types of tegmental pedunculopontine nucleus neurons have been reported previously based on their electrophysiological characteristics: type I neurons were characterized by low-threshold Ca spikes and type II neurons displayed a transient outward current. This report describes the membrane properties, synaptic inputs, morphologies and axonal projections of two subgroups of type II neurons examined in an in vitro slice preparation. Type II neurons were divided into two groups based on their spike durations: short-duration neurons with an action potential duration of 0.7-1.5 ms and long-duration neurons with an action potential duration of 1.6- 2.9 ms. Choline acetyltransferase immunohistochemistry combined with biocytin labeling indicated that 56% of short-duration neurons and 61% of long-duration neurons were immunopositive for choline acetyltransferase. Short-duration neurons had a high input resistance and the capacity to discharge with high frequency. By contrast, long-duration neurons had a low input resistance and low firing frequency and upon current injection displayed an accommodation (spike-frequency adaptation) before reaching a steady firing frequency. Microstimulation of the substantia nigra pars compacta evoked antidromic responses in both short-duration neurons (n=5/14, 36%) and long-duration neurons (n=20/39. 51%). Stimulations of the subthalamic nucleus and the substantia nigra pars reticulata induced in these neurons excitatory and inhibitory postsynaptic potentials, respectively. Short-duration neurons were dispersed equally throughout the extent of the tegmental pedunculopontine nucleus area, while long-duration neurons were located more in the rostral tegmental pedunculopontine nucleus. Short-duration neurons were small with two to four thin primary dendrites. Long-duration neurons were medium to large with three to six thick primary dendrites. Cell size was positively correlated with spike duration and axonal conduction velocity, but negatively with input resistance and spontaneous firing frequency. Both groups of neurons had ascending (toward thalamus, pretectal areas and tectum) and descending (toward pontomedullary reticular formation) axons in addition to nigropetal axons. Ascending axons were observed in 75% (6/8) of short-duration neurons and in 45% (15/33) of long-duration neurons, while nigropetal axons were observed in 50% (4/8) of short-duration neurons and in 76% (25/33) of long-duration neurons. These results suggest that the tegmental pedunculopontine nucleus cholinergic projection system is composed of heterogeneous populations of neurons in terms of electrophysiological and morphological characteristics as well as their distribution patterns in the nucleus.
European Radiology | 2003
Masayuki Maeda; Takashi Shiroyama; Hirokazu Tsukahara; Taro Shimono; Shigeki Aoki; Kan Takeda
Abstract. Transient focal lesions in the splenium of the corpus callosum have been reported in epileptic patients receiving antiepileptic drugs. The characteristic imaging features included an oval high signal lesion on T2-weighted images in the central part of the splenium, no enhancement on post-contrast MR images, and complete reversibility without specific treatment. We report identical MR imaging findings in a depressive patient who had received antiepileptic drugs. In addition, diffusion-weighted MR imaging findings are described in our case, which is the first report on this unique lesion associated with antiepileptic drugs. Although this lesion has been assumed to be vasogenic edema in the previous reports, diffusion-weighted MR imaging showed markedly restricted diffusion of the lesion in the present case, suggesting that cytotoxic edema was the main pathophysiological abnormality.
Brain Research | 1992
Yukihiko Yasui; Katsuma Nakano; Yutaka Nakagawa; Tetsuro Kayahara; Takashi Shiroyama; Noboru Mizuno
The dorsolateral part of the substantia nigra (SN) of the rat was observed to send projection fibers to the reticular formation (RF) around the trigeminal motor nucleus (Vm), bilaterally with a clear-cut ipsilateral dominance, by the anterograde and retrograde tracing techniques with PHA-L and WGA-HRP. A combination of retrograde tracing and immunohistochemistry for tyrosine hydroxylase (TH) revealed that no SN neurons sending their axons to the RF around the Vm showed TH-like immunoreactivity.
Brain Research | 2000
Hong Lai; Toshiko Tsumori; Takashi Shiroyama; Shigefumi Yokota; Katsuma Nakano; Yukihiko Yasui
We observed by anterograde and retrograde tracing techniques that projection fibers originating from the medial vestibular nucleus (MVe) of the rat terminated in the dorsal two-thirds of the lateral part of the parafascicular thalamic nucleus (PF), where neurons sending their axons to the dorsolateral part of the striatum existed. It was further revealed that the vestibular fibers made asymmetrical synaptic contacts mainly with dendrites and additionally with soma of the striatum-projecting PF neurons. These data suggest that output signals from the MVe may be transmitted disynaptically to the striatal neurons via the PF neurons.
Neuroscience Letters | 1995
Kazuhisa Wako; Ning Ma; Takashi Shiroyama; Reiji Semba
Recent studies have shown that free D-serine, an agonist for the N-methyl-D-aspartate receptor, is present in the forebrain of rats. In present study, we raised antibodies against D-serine and examined the distribution of both endogenous and intracerebroventricularly administered D-serine in the rat forebrain by an immunocytochemical method. D-Serine-like immunoreactive cells were found in glial cells in the brains of the rats injected with D-serine into the lateral ventricle. No immunoreactive cells were seen in the brains of untreated rats. The results suggest that glial cells may accumulate and catabolize D-serine to regulate the concentration of this neuroactive amino acid in the forebrain.
European Journal of Pharmacology | 2011
Keiko Ohoyama; Satoshi Yamamura; Tatsuya Hamaguchi; Masanori Nakagawa; Eishi Motomura; Takashi Shiroyama; Hisashi Tanii; Motohiro Okada
To clarify the mechanisms of action of blonanserin, an atypical antipsychotic drug, we studied the effects of systemic administration of blonanserin and risperidone on extracellular levels of norepinephrine, dopamine, serotonin, GABA and glutamate in the medial prefrontal cortex using microdialysis, and neuronal firing in the ventral tegmental area, locus coeruleus, dorsal raphe nucleus and mediodorsal thalamic nucleus using radiotelemetry. The binding affinities of blonanserin to D(2) and 5-HT(2A) receptors in the rat brain were confirmed and found to be similar. Blonanserin transiently increased neuronal firing in locus coeruleus and ventral tegmental area but not in dorsal raphe nucleus or mediodorsal thalamic nucleus, whereas risperidone increased the firing in locus coeruleus, ventral tegmental area and dorsal raphe nucleus but not in mediodorsal thalamic nucleus. Blonanserin persistently increased frontal extracellular levels of norepinephrine and dopamine but not serotonin, GABA or glutamate, whereas risperidone persistently increased those of norepinephrine, dopamine and serotonin but not GABA or glutamate. These results suggest a pharmacological correlation between the stimulatory effects of these antipsychotics on frontal monoamine release and neuronal activity in monoaminergic nuclei. Inhibition of the α(2) adrenoceptor increased extracellular monoamine levels and enhanced blonanserin-induced increase in extracellular serotonin level. These results indicated that the combination of antagonism of D(2) and 5-HT(2A) receptors contribute to the rise in extracellular levels of norepinephrine and dopamine, and that α(2) adrenoceptors play important roles in frontal serotonin release. They also suggest that blonanserin-induced activation of monoaminergic transmission could be, at least partially, involved in atypical antipsychotic properties of blonanserin.