Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takashi W. Ijiri is active.

Publication


Featured researches published by Takashi W. Ijiri.


Genes & Development | 2008

DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes

Satomi Kuramochi-Miyagawa; Toshiaki Watanabe; Kengo Gotoh; Yasushi Totoki; Atsushi Toyoda; Masahito Ikawa; Noriko Asada; Kanako Kojima; Yuka Yamaguchi; Takashi W. Ijiri; Kenichiro Hata; En Li; Yoichi Matsuda; Tohru Kimura; Masaru Okabe; Yoshiyuki Sakaki; Hiroyuki Sasaki; Toru Nakano

Silencing of transposable elements occurs during fetal gametogenesis in males via de novo DNA methylation of their regulatory regions. The loss of MILI (miwi-like) and MIWI2 (mouse piwi 2), two mouse homologs of Drosophila Piwi, activates retrotransposon gene expression by impairing DNA methylation in the regulatory regions of the retrotransposons. However, as it is unclear whether the defective DNA methylation in the mutants is due to the impairment of de novo DNA methylation, we analyze DNA methylation and Piwi-interacting small RNA (piRNA) expression in wild-type, MILI-null, and MIWI2-null male fetal germ cells. We reveal that defective DNA methylation of the regulatory regions of the Line-1 (long interspersed nuclear elements) and IAP (intracisternal A particle) retrotransposons in the MILI-null and MIWI2-null male germ cells takes place at the level of de novo methylation. Comprehensive analysis shows that the piRNAs of fetal germ cells are distinct from those previously identified in neonatal and adult germ cells. The expression of piRNAs is reduced under MILI- and MIWI2-null conditions in fetal germ cells, although the extent of the reduction differs significantly between the two mutants. Our data strongly suggest that MILI and MIWI2 play essential roles in establishing de novo DNA methylation of retrotransposons in fetal male germ cells.


Development | 2004

Mili, a mammalian member of piwi family gene, is essential for spermatogenesis

Satomi Kuramochi-Miyagawa; Tohru Kimura; Takashi W. Ijiri; Taku Isobe; Noriko Asada; Yukiko Fujita; Masahito Ikawa; Naomi Iwai; Masaru Okabe; Wei Deng; Haifan Lin; Yoichi Matsuda; Toru Nakano

The piwi family genes, which are defined by conserved PAZ and Piwi domains, play important roles in stem cell self-renewal, RNA silencing, and translational regulation in various organisms. To reveal the function of the mammalian homolog of piwi, we produced and analyzed mice with targeted mutations in the Mili gene, which is one of three mouse homologs of piwi. Spermatogenesis in the MILI-null mice was blocked completely at the early prophase of the first meiosis, from the zygotene to early pachytene, and the mice were sterile. However, primordial germ cell development and female germ cell production were not disturbed. Furthermore, MILI bound to MVH, which is an essential factor during the early spermatocyte stage. The similarities in the phenotypes of the MILI- and MVH-deficient mice and in the physical binding properties of MILI and MVH indicate a functional association of these proteins in post-transcriptional regulation. These data indicate that MILI is essential for the differentiation of spermatocytes.


Nature Neuroscience | 2000

Mutually exclusive expression of odorant receptor transgenes.

Shou Serizawa; Tomohiro Ishii; Hiroko Nakatani; Akio Tsuboi; Fumikiyo Nagawa; Masahide Asano; Katsuko Sudo; Junko Sakagami; Hitomi Sakano; Takashi W. Ijiri; Yoichi Matsuda; Misao Suzuki; Tetsuo Yamamori; Yoichiro Iwakura; Hitoshi Sakano

To study the mutually exclusive expression of odorant receptor (OR) genes, we generated transgenic mice that carried the murine OR gene MOR28. Expression of the transgene and the endogenous MOR28 was distinguished by using two different markers, β-galactosidase and green fluorescent protein (GFP), respectively. Double staining of the olfactory epithelium revealed that the two genes were rarely expressed simultaneously in individual olfactory neurons. A similar exclusion was also observed between differently tagged but identical transgenes integrated into the same locus of one particular chromosome. Although allelic inactivation has been reported for the choice between the maternal and paternal alleles, this is the first demonstration of mutually exclusive activation among non-allelic OR gene members with identical coding and regulatory sequences. Such an unusual mode of gene expression, monoallelic and mutually exclusive, has previously been shown only for the antigen-receptor genes of the immune system.


Molecular and Cellular Biology | 2003

Characterization of Sleeping Beauty Transposition and Its Application to Genetic Screening in Mice

Kyoji Horie; Kosuke Yusa; Kojiro Yae; Junko Odajima; Sylvia E. J. Fischer; Vincent W. Keng; Tomoko Hayakawa; Sumi Mizuno; Gen Kondoh; Takashi W. Ijiri; Yoichi Matsuda; Ronald H.A. Plasterk; Junji Takeda

ABSTRACT The use of mutant mice plays a pivotal role in determining the function of genes, and the recently reported germ line transposition of the Sleeping Beauty (SB) transposon would provide a novel system to facilitate this approach. In this study, we characterized SB transposition in the mouse germ line and assessed its potential for generating mutant mice. Transposition sites not only were clustered within 3 Mb near the donor site but also were widely distributed outside this cluster, indicating that the SB transposon can be utilized for both region-specific and genome-wide mutagenesis. The complexity of transposition sites in the germ line was high enough for large-scale generation of mutant mice. Based on these initial results, we conducted germ line mutagenesis by using a gene trap scheme, and the use of a green fluorescent protein reporter made it possible to select for mutant mice rapidly and noninvasively. Interestingly, mice with mutations in the same gene, each with a different insertion site, were obtained by local transposition events, demonstrating the feasibility of the SB transposon system for region-specific mutagenesis. Our results indicate that the SB transposon system has unique features that complement other mutagenesis approaches.


Molecular Reproduction and Development | 2012

Heads or tails? Structural events and molecular mechanisms that promote mammalian sperm acrosomal exocytosis and motility.

Mariano G. Buffone; Takashi W. Ijiri; Wenlei Cao; Tanya Merdiushev; Haig Aghajanian; George L. Gerton

Sperm structure has evolved to be very compact and compartmentalized to enable the motor (the flagellum) to transport the nuclear cargo (the head) to the egg. Furthermore, sperm do not exhibit progressive motility and are not capable of undergoing acrosomal exocytosis immediately following their release into the lumen of the seminiferous tubules, the site of spermatogenesis in the testis. These cells require maturation in the epididymis and female reproductive tract before they become competent for fertilization. Here we review aspects of the structural and molecular mechanisms that promote forward motility, hyperactivated motility, and acrosomal exocytosis. As a result, we favor a model articulated by others that the flagellum senses external signals and communicates with the head by second messengers to affect sperm functions such as acrosomal exocytosis. We hope this conceptual framework will serve to stimulate thinking and experimental investigations concerning the various steps of activating a sperm from a quiescent state to a gamete that is fully competent and committed to fertilization. The three themes of compartmentalization, competence, and commitment are key to an understanding of the molecular mechanisms of sperm activation. Comprehending these processes will have a considerable impact on the management of fertility problems, the development of contraceptive methods, and, potentially, elucidation of analogous processes in other cell systems. Mol. Reprod. Dev. 79:4–18, 2012.


Development | 2005

Ssdp1 regulates head morphogenesis of mouse embryos by activating the Lim1-Ldb1 complex.

Noriyuki Nishioka; Seiichi Nagano; Rika Nakayama; Hiroshi Kiyonari; Takashi W. Ijiri; Kenichiro Taniguchi; William Shawlot; Yoshihide Hayashizaki; Heiner Westphal; Richard R. Behringer; Yoichi Matsuda; Saburo Sakoda; Hisato Kondoh; Hiroshi Sasaki

The transcriptional activity of LIM-homeodomain (LIM-HD) proteins is regulated by their interactions with various factors that bind to the LIM domain. We show that reduced expression of single-stranded DNA-binding protein 1 (Ssdp1), which encodes a co-factor of LIM domain interacting protein 1 (Ldb1), in the mouse mutant headshrinker (hsk) disrupts anterior head development by partially mimicking Lim1 mutants. Although the anterior visceral endoderm and the anterior definitive endoderm, which together comprise the head organizer, were able to form normally in Ssdp1hsk/hsk mutants, development of the prechordal plate was compromised. Head development is partially initiated in Ssdp1hsk/hsk mutants, but neuroectoderm tissue anterior to the midbrain-hindbrain boundary is lost, without a concomitant increase in apoptosis. Cell proliferation is globally reduced in Ssdp1hsk/hsk mutants, and approximately half also exhibit smaller body size, similar to the phenotype observed in Lim1 and Ldb1 mutants. We also show that Ssdp1 contains an activation domain and is able to enhance transcriptional activation through a Lim1-Ldb1 complex in transfected cells, and that Ssdp1 interacts genetically with Lim1 and Ldb1 in both head development and body growth. These results suggest that Ssdp1 regulates the development of late head organizer tissues and body growth by functioning as an essential activator component of a Lim1 complex through interaction with Ldb1.


Proteomics | 2011

Identification and validation of mouse sperm proteins correlated with epididymal maturation

Takashi W. Ijiri; Tanya Merdiushev; Wenlei Cao; George L. Gerton

Sperm need to mature in the epididymis to become capable of fertilization. To understand the molecular mechanisms of mouse sperm maturation, we conducted a proteomic analysis using saturation dye labeling to identify proteins of caput and cauda epididymal sperm that exhibited differences in amounts or positions on two‐dimensional gels. Of eight caput epididymal sperm‐differential proteins, three were molecular chaperones and three were structural proteins. Of nine cauda epididymal sperm‐differential proteins, six were enzymes of energy metabolism. To validate these proteins as markers of epididymal maturation, immunoblotting and immunofluorescence analyses were performed. During epididymal transit, heat shock protein 2 was eliminated with the cytoplasmic droplet and smooth muscle γ‐actin exhibited reduced fluorescence from the anterior acrosome while the signal intensity of aldolase A increased, especially in the principal piece. Besides these changes, we observed protein spots, such as glutathione S‐transferase mu 5 and the E2 component of pyruvate dehydrogenase complex, shifting to more basic isoelectric points, suggesting post‐translational changes such dephosphorylation occur during epididymal maturation. We conclude that most caput epididymal sperm‐differential proteins contribute to the functional modification of sperm structures and that many cauda epididymal sperm‐differential proteins are involved in ATP production that promotes sperm functions such as motility.


Journal of Signal Transduction | 2012

Protein-Tyrosine Kinase Signaling in the Biological Functions Associated with Sperm

Takashi W. Ijiri; A. K. M. Mahbub Hasan; Ken-ichi Sato

In sexual reproduction, two gamete cells (i.e., egg and sperm) fuse (fertilization) to create a newborn with a genetic identity distinct from those of the parents. In the course of these developmental processes, a variety of signal transduction events occur simultaneously in each of the two gametes, as well as in the fertilized egg/zygote/early embryo. In particular, a growing body of knowledge suggests that the tyrosine kinase Src and/or other protein-tyrosine kinases are important elements that facilitate successful implementation of the aforementioned processes in many animal species. In this paper, we summarize recent findings on the roles of protein-tyrosine phosphorylation in many sperm-related processes (from spermatogenesis to epididymal maturation, capacitation, acrosomal exocytosis, and fertilization).


Development | 2014

The egg membrane microdomain-associated uroplakin III-Src system becomes functional during oocyte maturation and is required for bidirectional gamete signaling at fertilization in Xenopus laevis

A. K. M. Mahbub Hasan; Aki Hashimoto; Yuka Maekawa; Takashi Matsumoto; Shota Kushima; Takashi W. Ijiri; Yasuo Fukami; Ken-ichi Sato

In Xenopus laevis, sperm-egg interaction promotes partial proteolysis and/or tyrosine phosphorylation of uroplakin III (UPIII) and the tyrosine kinase Src, which both localize to the cholesterol-enriched egg membrane microdomains (MDs). Here we show that sperm promote proteolysis and/or tyrosine phosphorylation of UPIII and Src in MDs isolated from ovulated and unfertilized eggs (UF-MDs). An antibody against the extracellular domain of UPIII interferes with these events. Inhibition of fertilization by anti-UPIII antibody is rescued by co-incubation with UF-MDs. This suggests that, like MDs in intact eggs, the isolated UF-MDs are capable of interacting with sperm, an interaction that does not interfere with normal fertilization but rather augments the ability of sperm to fertilize eggs pretreated with anti-UPIII antibody. This unexpected effect of UF-MDs on sperm requires UPIII function in UF-MDs and protein kinase activity in sperm. MDs isolated from progesterone-treated mature oocytes, but not ovarian immature oocytes, are similarly functional as UF-MDs. The anti-UPIII extracellular domain antibody binds more effectively to the surface of mature than immature ovarian oocytes. We propose that the structural and functional competency of the UPIII-Src signaling system in MDs is strictly regulated during oocyte maturation and subsequently in sperm-mediated egg activation and fertilization. The fertilization-related signaling properties seen in UF-MDs can be partially reconstituted in MDs of human embryonic kidney 293 cells (293-MDs) expressing UPIII, Src and uroplakin Ib. However, 293-MDs expressing a proteolysis-resistant mutant of UPIII are less functional, suggesting that the availability of UPIII to protease action is important for MD function.


Mechanisms of Development | 2014

The need of MMP-2 on the sperm surface for Xenopus fertilization: Its role in a fast electrical block to polyspermy

Yasuhiro Iwao; Keiko Shiga; Ayumi Shiroshita; Tomoyasu Yoshikawa; Maho Sakiie; Tomoyo Ueno; Shuichi Ueno; Takashi W. Ijiri; Ken-ichi Sato

Monospermic fertilization in the frog, Xenopus laevis, is ensured by a fast-rising, positive fertilization potential to prevent polyspermy on the fertilized egg, followed by a slow block with the formation of a fertilization envelope over the egg surface. In this paper, we found that not only the enzymatic activity of sperm matrix metalloproteinase-2 (MMP-2) was necessary for a sperm to bind and/or pass through the extracellular coat of vitelline envelope, but also the hemopexin (HPX) domain of MMP-2 on the sperm surface was involved in binding and membrane fusion between the sperm and eggs. A peptide with a partial amino acid sequence of the HPX domain caused egg activation accompanied by an increase in [Ca(2+)]i in a voltage-dependent manner, similar to that in fertilization. The membrane microdomain (MD) of unfertilized eggs bound the HPX peptide, and this was inhibited by ganglioside GM1 distributed in the MD. The treatment of sperm with GM1 or anti-MMP-2 HPX antibody allows the sperm to fertilize an egg clamped at 0 mV, which untreated sperm cannot achieve. We propose a model accounting for the mechanism of voltage-dependent fertilization based on an interaction between the positively charged HPX domain in the sperm membrane and negatively-charged GM1 in the egg plasma membrane.

Collaboration


Dive into the Takashi W. Ijiri's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ken Yokoyama

Kyoto Sangyo University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George L. Gerton

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge