Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takashi Yamamura is active.

Publication


Featured researches published by Takashi Yamamura.


Nature | 2003

Light-induced hormone conversion of T4 to T3 regulates photoperiodic response of gonads in birds

Takashi Yoshimura; Shinobu Yasuo; Miwa Watanabe; Masayuki Iigo; Takashi Yamamura; Kanjun Hirunagi; Shizufumi Ebihara

Reproduction of many temperate zone birds is under photoperiodic control. The Japanese quail is an excellent model for studying the mechanism of photoperiodic time measurement because of its distinct and marked response to changing photoperiods. Studies on this animal have suggested that the mediobasal hypothalamus (MBH) is an important centre controlling photoperiodic time measurement. Here we report that expression in the MBH of the gene encoding type 2 iodothyronine deiodinase (Dio2), which catalyses the intracellular deiodination of thyroxine (T4) prohormone to the active 3,5,3′-triiodothyronine (T3), is induced by light in Japanese quail. Intracerebroventricular administration of T3 mimics the photoperiodic response, whereas the Dio2 inhibitor iopanoic acid prevents gonadal growth. These findings demonstrate that light-induced Dio2 expression in the MBH may be involved in the photoperiodic response of gonads in Japanese quail.


Nature | 2008

Thyrotrophin in the pars tuberalis triggers photoperiodic response

Nobuhiro Nakao; Hiroko Ono; Takashi Yamamura; Tsubasa Anraku; Tsuyoshi Takagi; Kumiko Higashi; Shinobu Yasuo; Yasuhiro Katou; Saburo Kageyama; Yumiko Uno; Takeya Kasukawa; Masayuki Iigo; Peter J. Sharp; Atsushi Iwasawa; Yutaka Suzuki; Sumio Sugano; Teruyuki Niimi; Makoto Mizutani; Takao Namikawa; Shizufumi Ebihara; Hiroki R. Ueda; Takashi Yoshimura

Molecular mechanisms regulating animal seasonal breeding in response to changing photoperiod are not well understood. Rapid induction of gene expression of thyroid-hormone-activating enzyme (type 2 deiodinase, DIO2) in the mediobasal hypothalamus (MBH) of the Japanese quail (Coturnix japonica) is the earliest event yet recorded in the photoperiodic signal transduction pathway. Here we show cascades of gene expression in the quail MBH associated with the initiation of photoinduced secretion of luteinizing hormone. We identified two waves of gene expression. The first was initiated about 14u2009h after dawn of the first long day and included increased thyrotrophin (TSH) β-subunit expression in the pars tuberalis; the second occurred approximately 4u2009h later and included increased expression of DIO2. Intracerebroventricular (ICV) administration of TSH to short-day quail stimulated gonadal growth and expression of DIO2 which was shown to be mediated through a TSH receptor–cyclic AMP (cAMP) signalling pathway. Increased TSH in the pars tuberalis therefore seems to trigger long-day photoinduced seasonal breeding.


Cell and Tissue Research | 2006

T3 implantation mimics photoperiodically reduced encasement of nerve terminals by glial processes in the median eminence of Japanese quail

Takashi Yamamura; Shinobu Yasuo; Kanjun Hirunagi; Shizufumi Ebihara; Takashi Yoshimura

Photoperiodically generated triiodothyronin (T3) in the mediobasal hypothalamus (MBH) has critical roles in the photoperiodic response of the gonads in Japanese quail. In a previous study, we demonstrated seasonal morphological changes in the neuro-glial interaction between gonadotrophin-releasing hormone (GnRH) nerve terminals and glial endfeet in the median eminence (ME). However, a direct relationship between photoperiodically generated T3 and seasonal neuro-glial plasticity in the ME remained unclear. In the present study, we examined the effect of T3 implantation into the MBH on the neuro-glial interaction in the ME. T3 implantation caused testicular growth and reduced encasement of nerve terminals in the external zone of the ME. In contrast, no morphological changes were observed in birds given an excessive dose of T3, which did not cause testicular growth. These results support the hypothesis that thyroid hormone regulates photoperiodic GnRH secretion via neuro-glial plasticity in the ME.


Journal of Reproduction and Development | 2012

Electrophysiological and morphological evidence for synchronized GnRH pulse generator activity among Kisspeptin/neurokinin B/dynorphin A (KNDy) neurons in goats.

Yoshihiro Wakabayashi; Takashi Yamamura; Kohei Sakamoto; Yuji Mori; Hiroaki Okamura

Abstract Neurons in the arcuate nucleus (ARC) that concomitantly express kisspeptin, neurokinin B (NKB) and dynorphin A are termed KNDy neurons and are likely candidates for the intrinsic gonadotropin-releasing hormone (GnRH) pulse generator. Our hypothesis is that KNDy neurons are functionally and anatomically interconnected to generate discrete neural signals that govern pulsatile GnRH secretion. Our goal was to address this hypothesis using electrophysiological and anatomical experiments in goats. Bilateral electrodes targeting KNDy neurons were implanted into ovariectomized goats, and GnRH pulse generator activity, represented by characteristic increases in multiple-unit activity (MUA volleys), was measured. Spontaneous and pheromone- or senktide (an NKB receptor agonist)-induced MUA volleys were simultaneously recorded from both sides of the ARC. An anterograde tracer, biotinylated dextran amine (BDA), was also injected unilaterally into the ARC of castrated male goats, and the distribution of fibers containing both BDA and NKB was examined using dual-labeling histochemistry. The results showed that MUA volleys, regardless of origin (spontaneous or experimentally induced), occur simultaneously between the right and left sides of the ARC. Tract tracing indicated that axons projecting from NKB neurons in the ARC were directly apposed to other NKB neuronal cells located bilaterally in the ARC. These results demonstrate that GnRH pulse generator activity occurs synchronously between both sides of the ARC in goats and that KNDy neurons are bilaterally interconnected in the ARC via NKB-containing fibers. Taken together, the results suggest that KNDy neurons form a neuronal circuit to synchronize burst activity among KNDy neurons and thereby generate discrete neural signals that govern pulsatile GnRH secretion.


Animal Science Journal | 2009

Red jungle fowl (Gallus gallus) as a model for studying the molecular mechanism of seasonal reproduction

Hiroko Ono; Nobuhiro Nakao; Takashi Yamamura; Keiji Kinoshita; Makoto Mizutani; Takao Namikawa; Masayuki Iigo; Shizufumi Ebihara; Takashi Yoshimura

Photoperiodism is an adaptation mechanism that enables animals to predict seasonal changes in the environment. Japanese quail is the best model organism for studying photoperiodism. Although the recent availability of chicken genome sequences has permitted the expansion from single gene to genome-wide transcriptional analysis in this organism, the photoperiodic response of the domestic chicken is less robust than that of the quail. Therefore, in the present study, we examined the photoperiodic response of the red jungle fowl (Gallus gallus), a predecessor of the domestic chicken, to test whether this animal could be developed as an ideal model for studying the molecular mechanisms of seasonal reproduction. When red jungle fowls were transferred from short-day- to long-day conditions, gonadal development and an increase in plasma LH concentration were observed. Furthermore, rapid induction of thyrotropin beta subunit, a master regulator of photoperiodism, was observed at 16 h after dawn on the first long day. In addition, the long-day condition induced the expression of type 2 deiodinase, the key output gene of photoperiodism. These results were consistent with the results obtained in quail and suggest that the red jungle fowl could be an ideal model animal for the genome-wide transcriptional analysis of photoperiodism.


Chronobiology International | 2006

Molecular Mechanism of Photoperiodic Time Measurement in the Brain of Japanese Quail

Shinobu Yasuo; Miwa Watanabe; Masayuki Iigo; Takashi Yamamura; Nobuhiro Nakao; Tsuyoshi Takagi; Shizufumi Ebihara; Takashi Yoshimura

In most organisms living in temperate zones, reproduction is under photoperiodic control. Although photoperiodic time measurement has been studied in organisms ranging from plants to vertebrates, the underlying molecular mechanism is not well understood. The Japanese quail (Coturnix japonica) represents an excellent model to study this problem because of the rapid and dramatic photoperiodic response of its hypothalamic‐pituitary‐gonadal axis. Recent investigations of Japanese quail show that long‐day‐induced type 2 deiodinase (Dio2) expression in the mediobasal hypothalamus (MBH) plays an important role in the photoperiodic gonadal regulation by catalyzing the conversion of the prohormone thyroxine (T4) to bioactive 3,5,3′‐triiodothyronine (T3). The T3 content in the MBH is approximately 10‐fold higher under long than short days and conditions, and the intracerebroventricular infusion of T3 under short days and conditions mimics the photoperiodic gonadal response. While Dio2 generates active T3 from T4 by outer ring deiodination, type 3 deiodinase (Dio3) catalyzes the conversion of both T3 and T4 into inactive forms by inner ring deiodination. In contrast to Dio2 expression, Dio3 expression in the MBH is suppressed under the long‐day condition. Photoperiodic changes in the expression of both genes during the photoinduction process occur before the changes in the level of luteinizing hormone (LH) secretion, suggesting that the reciprocal changes in Dio2 and Dio3 expression act as gene switches of the photoperiodic molecular cascade to trigger induction of LH secretion.


Neuroscience Research | 2006

Peripheral clock gene expression in CS mice with bimodal locomotor rhythms.

Tsuyoshi Watanabe; Mayumi Kojima; Shigeru Tomida; Takahiro J. Nakamura; Takashi Yamamura; Nobuhiro Nakao; Shinobu Yasuo; Takashi Yoshimura; Shizufumi Ebihara

CS mice show unique properties of circadian rhythms: unstable free-running periods and distinct bimodal rhythms (similar to rhythm splitting, but hereafter referred to as bimodal rhythms) under constant darkness. In the present study, we compared clock-related gene expression (mPer1, mBmal1 and Dbp) in the SCN and peripheral tissues (liver, adrenal gland and heart) between CS and C57BL/6J mice. In spite of normal robust oscillation in the SCN of both mice, behavioral rhythms and peripheral rhythms of clock-related genes were significantly different between these mice. However, when daytime restricted feeding was given, no essential differences between the two strains were observed. These results indicate that unusual circadian behaviors and peripheral gene expression in CS mice do not depend on the SCN but rather mechanisms outside of the SCN.


Endocrinology | 2004

Photoperiodic Regulation of Type 2 Deiodinase Gene in Djungarian Hamster: Possible Homologies between Avian and Mammalian Photoperiodic Regulation of Reproduction

Miwa Watanabe; Shinobu Yasuo; Tsuyoshi Watanabe; Takashi Yamamura; Nobuhiro Nakao; Shizufumi Ebihara; Takashi Yoshimura


Endocrinology | 2004

Seasonal Morphological Changes in the Neuro-Glial Interaction between Gonadotropin-Releasing Hormone Nerve Terminals and Glial Endfeet in Japanese Quail

Takashi Yamamura; Kanjun Hirunagi; Shizufumi Ebihara; Takashi Yoshimura


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2007

Hypothalamic expression of thyroid hormone-activating and -inactivating enzyme genes in relation to photorefractoriness in birds and mammals

Tsuyoshi Watanabe; Takashi Yamamura; Miwa Watanabe; Shinobu Yasuo; Nobuhiro Nakao; Alistair Dawson; Shizufumi Ebihara; Takashi Yoshimura

Collaboration


Dive into the Takashi Yamamura's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge