Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takaya Kisugi is active.

Publication


Featured researches published by Takaya Kisugi.


Planta | 2012

How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation

Kaori Yoneyama; Xiaonan Xie; Hyun Il Kim; Takaya Kisugi; Takahito Nomura; Hitoshi Sekimoto; Takao Yokota; Koichi Yoneyama

Plants exude strigolactones (SLs) to attract symbiotic arbuscular mycorrhizal fungi in the rhizosphere. Previous studies have demonstrated that phosphorus (P) deficiency, but not nitrogen (N) deficiency, significantly promotes SL exudation in red clover, while in sorghum not only P deficiency but also N deficiency enhances SL exudation. There are differences between plant species in SL exudation under P- and N-deficient conditions, which may possibly be related to differences between legumes and non-legumes. To investigate this possibility in detail, the effects of N and P deficiencies on SL exudation were examined in Fabaceae (alfalfa and Chinese milk vetch), Asteraceae (marigold and lettuce), Solanaceae (tomato), and Poaceae (wheat) plants. In alfalfa as expected, and unexpectedly in tomato, only P deficiency promoted SL exudation. In contrast, in Chinese milk vetch, a leguminous plant, and in the other non-leguminous plants examined, N deficiency as well as P deficiency enhanced SL exudation. Distinct reductions in shoot P levels were observed in plants grown under N deficiency, except for tomato, in which shoot P level was increased by N starvation, suggesting that the P status of the shoot regulates SL exudation. There seems to be a correlation between shoot P levels and SL exudation across the species/families investigated.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro.

Satoko Abe; Aika Sado; Kai Tanaka; Takaya Kisugi; Kei Asami; Saeko Ota; Hyun Il Kim; Kaori Yoneyama; Xiaonan Xie; Toshiyuki Ohnishi; Yoshiya Seto; Shinjiro Yamaguchi; Kohki Akiyama; Koichi Yoneyama; Takahito Nomura

Significance Strigolactones (SLs) are plant hormones that inhibit shoot branching and are parasitic and symbiotic signals toward root parasitic plants and arbuscular mycorrhizal fungi, respectively. Therefore, the manipulation of SL levels potentially improves the yield of crops. To achieve this goal, the biosynthesis pathway of SLs must be fully understood. SLs are biosynthesized from a precursor, named carlactone (CL), which is derived from carotenoid. However, no downstream pathway of CL has been elucidated. In this study, we show that CL is converted into a carboxylated metabolite, named carlactonoic acid, by Arabidopsis MAX1, the enzymatic function of which had been unknown, and that its methyl ester has the ability to interact with a SL receptor and suppress shoot branching in Arabidopsis. Strigolactones (SLs) stimulate seed germination of root parasitic plants and induce hyphal branching of arbuscular mycorrhizal fungi in the rhizosphere. In addition, they have been classified as a new group of plant hormones essential for shoot branching inhibition. It has been demonstrated thus far that SLs are derived from carotenoid via a biosynthetic precursor carlactone (CL), which is produced by sequential reactions of DWARF27 (D27) enzyme and two carotenoid cleavage dioxygenases CCD7 and CCD8. We previously found an extreme accumulation of CL in the more axillary growth1 (max1) mutant of Arabidopsis, which exhibits increased lateral inflorescences due to SL deficiency, indicating that CL is a probable substrate for MAX1 (CYP711A1), a cytochrome P450 monooxygenase. To elucidate the enzymatic function of MAX1 in SL biosynthesis, we incubated CL with a recombinant MAX1 protein expressed in yeast microsomes. MAX1 catalyzed consecutive oxidations at C-19 of CL to convert the C-19 methyl group into carboxylic acid, 9-desmethyl-9-carboxy-CL [designated as carlactonoic acid (CLA)]. We also identified endogenous CLA and its methyl ester [methyl carlactonoate (MeCLA)] in Arabidopsis plants using LC-MS/MS. Although an exogenous application of either CLA or MeCLA suppressed the growth of lateral inflorescences of the max1 mutant, MeCLA, but not CLA, interacted with Arabidopsis thaliana DWARF14 (AtD14) protein, a putative SL receptor, as shown by differential scanning fluorimetry and hydrolysis activity tests. These results indicate that not only known SLs but also MeCLA are biologically active in inhibiting shoot branching in Arabidopsis.


Molecular Plant | 2013

Confirming Stereochemical Structures of Strigolactones Produced by Rice and Tobacco

Xiaonan Xie; Kaori Yoneyama; Takaya Kisugi; Kenichi Uchida; Seisuke Ito; Kohki Akiyama; Hideo Hayashi; Takao Yokota; Takahito Nomura; Koichi Yoneyama

Summary Major strigolactones produced by rice (Oryza sativa L.) and tobacco (Nicotiana tabacum L.) were purified and their stereochemical structures were determined definitely by comparing with optically pure synthetic standards for spectroscopic data.


Plant Growth Regulation | 2011

Characterization of strigolactones exuded by Asteraceae plants

Kaori Yoneyama; Xiaonan Xie; Takaya Kisugi; Takahito Nomura; Hitoshi Sekimoto; Takao Yokota; Koichi Yoneyama

Strigolactones (SLs), originally characterized as germination stimulants for root parasitic weeds, are now recognized as hyphal branching factors for symbiotic arbuscular mycorrhizal fungi and as a novel class of plant hormones inhibiting shoot branching. In the present study, SLs in root exudates of 13 Asteraceae plants including crops, a weed, and ornamental plants were characterized. High performance liquid chromatography/tandem mass spectrometry (LC–MS/MS) analyses revealed that all the Asteraceae plants examined exuded known SLs and, except for sunflower (Helianthus annuus), high germination stimulant activities at retention times corresponding to these SLs were confirmed. The two major SLs exuded by these Asteraceae plants were orobanchyl acetate and orobanchol. 5-Deoxystrigol and 7-hydroxyorobanchyl acetate were detected in root exudates from several Asteraceae species examined in this study.


New Phytologist | 2015

Difference in Striga-susceptibility is reflected in strigolactone secretion profile, but not in compatibility and host preference in arbuscular mycorrhizal symbiosis in two maize cultivars.

Kaori Yoneyama; Ryota Arakawa; Keiko Ishimoto; Hyun Il Kim; Takaya Kisugi; Xiaonan Xie; Takahito Nomura; Fred Kanampiu; Takao Yokota; Tatsuhiro Ezawa; Koichi Yoneyama

Strigolactones released from plant roots trigger both seed germination of parasitic weeds such as Striga spp. and hyphal branching of the symbionts arbuscular mycorrhizal (AM) fungi. Generally, strigolactone composition in exudates is quantitatively and qualitatively different among plants, which may be involved in susceptibility and host specificity in the parasite-plant interactions. We hypothesized that difference in strigolactone composition would have a significant impact on compatibility and host specificity/preference in AM symbiosis. Strigolactones in root exudates of Striga-susceptible (Pioneer 3253) and -resistant (KST 94) maize (Zea mays) cultivars were characterized by LC-MS/MS combined with germination assay using Striga hermonthica seeds. Levels of colonization and community compositions of AM fungi in the two cultivars were investigated in field and glasshouse experiments. 5-Deoxystrigol was exuded exclusively by the susceptible cultivar, while the resistant cultivar mainly exuded sorgomol. Despite the distinctive difference in strigolactone composition, the levels of AM colonization and the community compositions were not different between the cultivars. The present study demonstrated that the difference in strigolactone composition has no appreciable impact on AM symbiosis, at least in the two maize cultivars, and further suggests that the traits involved in Striga-resistance are not necessarily accompanied by reduction in compatibility to AM fungi.


Journal of Agricultural and Food Chemistry | 2014

Low strigolactone root exudation: a novel mechanism of broomrape (Orobanche and Phelipanche spp.) resistance available for faba bean breeding.

Mónica Fernández-Aparicio; Takaya Kisugi; Xiaonan Xie; Diego Rubiales; Koichi Yoneyama

Faba bean yield is severely constrained in the Mediterranean region and Middle East by the parasitic weeds Orobanche crenata, O. foetida, and Phelipanche aegyptiaca. Seed germination of these weeds is triggered upon recognition of host root exudates. Only recently faba bean accessions have been identified with resistance based in low induction of parasitic seed germination, but the underlying mechanism was not identified. Strigolactones are a group of terpenoid lactones involved in the host recognition by parasitic plants. Our LC-MS/MS analysis of root exudates of the susceptible accession Prothabon detected orobanchol, orobanchyl acetate, and a novel germination stimulant. A time course analysis indicated that their concentration increased with plant age. However, low or undetectable amounts of these germination stimulants were detected in root exudates of the resistant lines Quijote and Navio at all plant ages. A time course analysis of seed germination induced by root exudates of each faba bean accession indicated important differences in the ability to stimulate parasitic germination. Results presented here show that resistance to parasitic weeds based on low strigolactone exudation does exist within faba bean germplasm. Therefore, selection for this trait is feasible in a breeding program. The remarkable fact that low induction of germination is similarly operative against O. crenata, O. foetida, and P. aegyptiaca reinforces the value of this resistance.


Phytochemistry | 2014

Avenaol, a germination stimulant for root parasitic plants from Avena strigosa

Hyun Il Kim; Takaya Kisugi; Pichit Khetkam; Xiaonan Xie; Kaori Yoneyama; Kenichi Uchida; Takao Yokota; Takahito Nomura; Christopher S. P. McErlean; Koichi Yoneyama

Root exudates from the allelopathic plant, black oat (Avena strigosa Schreb.), were found to contain at least six different germination stimulants for root parasitic plants, but no known strigolactones (SLs). One of these germination stimulants was purified and named avenaol. Its HR-ESI-TOFMS analysis indicated that the molecular formula of avenaol is C20H24O7, and thus it contains an additional carbon compared with known C19-SLs. Its structure was determined as 5-((E)-(5-(3-hydroxy-1,5,5-trimethyl-2-oxobicyclo[4.1.0]heptan-7-yl)-2-oxodihydrofuran-3(2H)-ylidene)methoxy)-3-methylfuran-2(5H)-one, by 1D and 2D NMR spectroscopy, and ESI- and EI-MS spectrometry. Although avenaol contains the C-D moiety, the common structural feature for all known SLs, it lacks the B ring and has an additional carbon atom between the A and C rings. Avenaol is a potent germination stimulant of Phelipanche ramosa seeds, but only a weak stimulant for seeds of Striga hermonthica and Orobanche minor.


Planta | 2015

Shoot-derived signals other than auxin are involved in systemic regulation of strigolactone production in roots

Kaori Yoneyama; Takaya Kisugi; Xiaonan Xie; Ryota Arakawa; Tatsuhiro Ezawa; Takahito Nomura; Koichi Yoneyama

AbstractMain conclusionNitrogen and phosphorus fertilization in one side of split-root sorghum plants systemically reduced root contents of strigolactones in both sides of the split roots. Shoot-derived signals other than auxin appeared to be involved in this process. Strigolactones (SLs) are a novel class of plant hormones regulating both shoot and root architectures and suggested to be functioning downstream of auxin. The levels of SLs in plant tissues and root exudates are regulated by nutrients, especially phosphorus (P) and nitrogen (N); however, the underlying mechanism remains elusive. We examined the effects of N and P fertilization on root contents of two SLs, sorgomol and 5-deoxystrigol, in sorghum plants pre-incubated under N and P free conditions using a split-root system. N and P fertilization to one side of the split-root plants systemically reduced root contents of SLs in both sides of the split roots. The shoot N and P levels increased when one side of the split-root plants was fertilized, while N and P levels in the non-fertilized split roots were unaffected. N fertilization decreased shoot and root IAA (indole-3-acetic acid) levels, while P fertilization did not affect them. IAA applied to the shoot apices increased root contents of 5-deoxystrigol but not that of sorgomol only when the plants were grown under P free conditions. Shoot (leaf) removal dramatically decreased the root contents of SLs but did not affect root IAA levels, and IAA applied to the stumps of leaves could not restore root contents of SLs. Consequently, shoot-derived signals other than auxin are suggested to be involved in the regulation of SL production in roots.


Journal of Natural Products | 2009

Micropeptins from the freshwater cyanobacterium Microcystis aeruginosa (NIES-100).

Takaya Kisugi; Tatsufumi Okino

Micropeptins C (1), D (2), E (3), and F (4) have been isolated from the freshwater cyanobacterium Microcystis aeruginosa (NIES-100). The structures were elucidated by analyses of MS, NMR spectra, and chemical degradation. Micropeptins C, D, E, and F inhibited chymotrypsin with IC(50)s of 1.1, 1.2, 1.0, and 1.5 microg/mL, respectively.


Journal of Pesticide Science | 2017

Methyl zealactonoate, a novel germination stimulant for root parasitic weeds produced by maize

Xiaonan Xie; Takaya Kisugi; Kaori Yoneyama; Takahito Nomura; Kohki Akiyama; Kenichi Uchida; Takao Yokota; Christopher S. P. McErlean; Koichi Yoneyama

One of the germination stimulants for root parasitic weeds produced by maize (Zea mays) was isolated and named methyl zealactonoate (1). Its structure was determined to be methyl (2E,3E)-4-((RS)-3,3-dimethyl-2-(3-methylbut-2-en-2-yl)-5-oxotetrahydrofuran-2-yl)-2-((((R)-4-methyl-5-oxo-2,5-dihydrofran-2-yl)oxy)methylene)but-3-enoate using by 1D and 2D NMR spectroscopy and ESI and EI-MS spectrometry. Feeding experiments with 13C-carlactone (CL), a biosynthetic intermediate for strigolactones, confirmed that 1 is produced from CL in maize. Methyl zealactonoate strongly elicits Striga hermonthica and Phelipanche ramosa seed germination, while Orobanche minor seeds are 100-fold less sensitive to this stimulant.

Collaboration


Dive into the Takaya Kisugi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kohki Akiyama

Osaka Prefecture University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge