Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takeaki Ozawa is active.

Publication


Featured researches published by Takeaki Ozawa.


Nature Biotechnology | 2002

Fluorescent Indicators for Imaging Protein Phosphorylation in Single Living Cells

Moritoshi Sato; Takeaki Ozawa; Kouichi Inukai; Tomoichiro Asano; Yoshio Umezawa

To visualize signal transduction based on protein phosphorylation in living cells, we have developed genetically encoded fluorescent indicators, named phocuses. Two different color mutants of green fluorescent protein (GFP) were joined by a tandem fusion domain composed of a substrate domain for the protein kinase of interest, a flexible linker sequence, and a phosphorylation recognition domain that binds with the phosphorylated substrate domain. Intramolecular interaction of the substrate domain and the adjacent phosphorylation recognition domain within a phocus was dependent upon phosphorylation of the substrate domain by protein kinase, which influenced the efficiency of fluorescence resonance energy transfer (FRET) between the GFPs within a phocus. In the present study, we employed phocuses composed of insulin signaling proteins to visualize protein phosphorylation by the insulin receptor. This method may provide a general approach for studying the dynamics of protein phosphorylation–based signal transduction in living cells.


Molecular Cell | 2014

Long Noncoding RNA NEAT1-Dependent SFPQ Relocation from Promoter Region to Paraspeckle Mediates IL8 Expression upon Immune Stimuli

Katsutoshi Imamura; Naoto Imamachi; Gen Akizuki; Michiko Kumakura; Atsushi Kawaguchi; Kyosuke Nagata; Akihisa Kato; Yasushi Kawaguchi; Hiroki Sato; Misako Yoneda; Chieko Kai; Tetsushi Yada; Yutaka Suzuki; Toshimichi Yamada; Takeaki Ozawa; Kiyomi Kaneki; Tsuyoshi Inoue; Mika Kobayashi; Tatsuhiko Kodama; Youichiro Wada; Kazuhisa Sekimizu; Nobuyoshi Akimitsu

Although thousands of long noncoding RNAs (lncRNAs) are localized in the nucleus, only a few dozen have been functionally characterized. Here we show that nuclear enriched abundant transcript 1 (NEAT1), an essential lncRNA for the formation of nuclear body paraspeckles, is induced by influenza virus and herpes simplex virus infection as well as by Toll-like receptor3-p38 pathway-triggered poly I:C stimulation, resulting in excess formation of paraspeckles. We found that NEAT1 facilitates the expression of antiviral genes including cytokines such as interleukin-8 (IL8). We found that splicing factor proline/glutamine-rich (SFPQ), a NEAT1-binding paraspeckle protein, is a repressor of IL8 transcription, and that NEAT1 induction relocates SFPQ from the IL8 promoter to the paraspeckles, leading to transcriptional activation of IL8. Together, our data show that NEAT1 plays an important role in the innate immune response through the transcriptional regulation of antiviral genes by the stimulus-responsive cooperative action of NEAT1 and SFPQ.


Nature Methods | 2007

Imaging dynamics of endogenous mitochondrial RNA in single living cells

Takeaki Ozawa; Yutaka Natori; Moritoshi Sato; Yoshio Umezawa

We developed genetically encoded RNA probes for characterizing localization and dynamics of mitochondrial RNA (mtRNA) in single living cells. The probes consist of two RNA-binding domains of PUMILIO1, each connected with split fragments of a fluorescent protein capable of reconstituting upon binding to a target RNA. We designed the probes to specifically recognize a 16-base sequence of mtRNA encoding NADH dehydrogenase subunit 6 (ND6) and to be targeted into the mitochondrial matrix, which allowed real-time imaging of ND6 mtRNA localization in living cells. We showed that ND6 mtRNA is localized within mitochondria and concentrated particularly on mitochondrial DNA (mtDNA). Movement of the ND6 mtRNA is restricted but oxidative stress induces the mtRNA to disperse in the mitochondria and gradually decompose. These probes provide a means to study spatial and temporal mRNA dynamics in intracellular compartments in living mammalian cells.NOTE: In the version of this article initially published online, the wording in the third sentence of the introduction was unclear. The error has been corrected for all versions of the article.


Nature Biotechnology | 2003

A genetic approach to identifying mitochondrial proteins

Takeaki Ozawa; Yusuke Sako; Moritoshi Sato; Toshio Kitamura; Yoshio Umezawa

The control of intricate networks within eukaryotic cells relies on differential compartmentalization of proteins. We have developed a method that allows rapid identification of novel proteins compartmentalized in mitochondria by screening large-scale cDNA libraries. The principle is based on reconstitution of split-enhanced green fluorescent protein (EGFP) by protein splicing of DnaE derived from Synechocystis sp. PCC6803. The cDNA libraries are expressed in mammalian cells following infection with retrovirus. If a test protein contains a functional mitochondrial targeting signal (MTS), it translocates into the mitochondrial matrix, where EGFP is then formed by protein splicing. The cells harboring this reconstituted EGFP are screened rapidly by fluorescence-activated cell sorting, and the cDNAs are isolated and identified from the cells. The analysis of 258 cDNAs revealed various MTSs, among which we identified new transcripts corresponding to mitochondrial proteins. This method should provide a means to map proteins distributed within intracellular organelles in a broad range of different tissues and disease states.


Analytical Chemistry | 2013

Advances in fluorescence and bioluminescence imaging.

Takeaki Ozawa; Hideaki Yoshimura; Sung Bae Kim

■ CONTENTS Fluorescence Imaging C Fluorescent Molecules for Bioimaging C Genetically Encoded Fluorescent Molecules C Synthetic Organic Fluorescent Molecules for Bioimaging F Fluorescent Nanoparticles for Bioimaging Studies F Fluorescent Probes for Biological Events G Probes for RNAs G Probes for Kinase Activity H Probes for Ions, Small Molecules, and Intracellular Environments H Bioluminescence Imaging and Quantitative Analysis K Luciferases and Substrates K Novel Luciferases K Substrates for Luciferases L Bioluminescent Probes L Probes for Protein−Protein Interactions L Probes for Small Molecules M Probes for Enzymatic Activity N Probes for Nucleic Acids N Probes for Gene Expression N Imaging of Living Subjects N Imaging of Disease Progression N Imaging of Stem Cells and Organs O Imaging of Cancers and Their Metastasis O Perspective P Author Information P Corresponding Author P Notes P Biographies P Acknowledgments Q References Q


PLOS ONE | 2009

High-Sensitivity Real-Time Imaging of Dual Protein-Protein Interactions in Living Subjects Using Multicolor Luciferases

Naoki Hida; Muhammad Awais; Masaki Takeuchi; Naoto Ueno; Mayuri Tashiro; Chiyo Takagi; Tanuja Singh; Makoto Hayashi; Yoshihiro Ohmiya; Takeaki Ozawa

Networks of protein-protein interactions play key roles in numerous important biological processes in living subjects. An effective methodology to assess protein-protein interactions in living cells of interest is protein-fragment complement assay (PCA). Particularly the assays using fluorescent proteins are powerful techniques, but they do not directly track interactions because of its irreversibility or the time for chromophore formation. By contrast, PCAs using bioluminescent proteins can overcome these drawbacks. We herein describe an imaging method for real-time analysis of protein-protein interactions using multicolor luciferases with different spectral characteristics. The sensitivity and signal-to-background ratio were improved considerably by developing a carboxy-terminal fragment engineered from a click beetle luciferase. We demonstrate its utility in spatiotemporal characterization of Smad1–Smad4 and Smad2–Smad4 interactions in early developing stages of a single living Xenopus laevis embryo. We also describe the value of this method by application of specific protein-protein interactions in cell cultures and living mice. This technique supports quantitative analyses and imaging of versatile protein-protein interactions with a selective luminescence wavelength in opaque or strongly auto-fluorescent living subjects.


Analytical Chemistry | 2010

Rapid and High-Sensitivity Cell-Based Assays of Protein−Protein Interactions Using Split Click Beetle Luciferase Complementation: An Approach to the Study of G-Protein-Coupled Receptors

Naomi Misawa; A. K. M. Kafi; Mitsuru Hattori; Kenji Miura; Kenji Masuda; Takeaki Ozawa

To identify biologically relevant compounds in basic biology and drug discovery processes, rapid quantitative methods for elucidating protein-protein interactions have become necessary. We describe a novel optical technique for monitoring protein-protein interactions in living cells based on complementation of split luciferase fragments from click beetle (Brazilian Pyrearinus termitilluminans). A new pair of amino-terminal and carboxy-terminal fragments of the luciferase was identified using semirational library screening, demonstrating achieved markedly higher sensitivity and signal-to-background ratio. The identified fragments were applied to the study of five G-protein coupled receptors (GPCR) that interact with beta-arrestin on the plasma membrane. By generating cell lines stably expressing the GPCRs and beta-arrestin connected with the luciferase fragments, we demonstrated rapid and sensitive screening of potential chemicals that act on GPCRs using a 96-well microtiter plate format. The screening time was reduced to 5-10 min after ligand stimulation. The maximum response became more than 15-fold higher than the background signal. This luciferase complementation method also enabled accurate spatial and temporal analyses of interactions in single living cells using bioluminescence microscopy. These GPCR assays will facilitate developments of high-throughput screening systems in a multiwell plate format. Furthermore, using specific proteins of interest, the novel fragments of luciferase will provide different assay methods for the study of many intracellular signals in living cells and animals.


Analytical Chemistry | 2011

Visualization of Nonengineered Single mRNAs in Living Cells Using Genetically Encoded Fluorescent Probes

Toshimichi Yamada; Hideaki Yoshimura; Asumi Inaguma; Takeaki Ozawa

Single mRNA imaging in live cells is a useful technique to elucidate its precise localization and dynamics. We developed a method for visualizing endogenous mRNAs in living cells with single molecule sensitivity using genetically encoded probes. An RNA-binding protein of human PUMILIO1 (PUM-HD) was used for recognizing base sequences of a target mRNA, β-actin mRNA. Two PUM-HDs were modified by amino acid mutations to bind specifically to tandem 8-base sequences of the target mRNA. Because each PUM-HD was connected with amino- and carboxyl-terminal fragments of enhanced green fluorescent protein (EGFP), the probes emit fluorescence by reconstitution of EGFP fragments upon binding to β-actin mRNAs. The EGFP reconstituted on the mRNAs was monitored with a total internal reflection fluorescence microscope. Results show that each fluorescent spot in live cells represented a single β-actin mRNA and that distinct spatial and temporal movement of the individual β-actin mRNAs was visualized. We also estimated the average velocity of the movement of the single mRNAs along microtubules in live cells. This method is widely applicable to tracking various mRNAs of interest in the native state of living cells with single-mRNA sensitivity.


ACS Chemical Biology | 2012

Fluorescent probes for imaging endogenous β-actin mRNA in living cells using fluorescent protein-tagged pumilio.

Hideaki Yoshimura; Asumi Inaguma; Toshimichi Yamada; Takeaki Ozawa

Subcellular localization and dynamics of mRNAs control various physiological functions in living cells. A novel technique for visualizing endogenous mRNAs in living cells is necessary for investigation of the spatiotemporal movement of mRNAs. A pumilio homology domain of human pumilio 1 (PUM-HD) is a useful RNA binding protein as a tool for mRNA recognition because the domain can be modified to bind a specific 8-base sequence of target mRNA. In this study, we designed PUM-HD to match the sequence of β-actin mRNA and developed an mRNA probe consisting of two PUM-HD mutants flanking full-length enhanced green fluorescent protein (EGFP). Fluorescence microscopy with the probe in living cells revealed that the probe was labeled precisely with the β-actin mRNA in cytosol. Fluorescent spots from the probe were colocalized with microtubules and moved directionally in living cells. The PUM-HD mutants conjugated with full-length EGFP can enable visualization of β-actin mRNA localization and dynamics in living cells.


PLOS ONE | 2011

Synchronization of Circadian Per2 Rhythms and HSF1- BMAL1:CLOCK Interaction in Mouse Fibroblasts after Short-Term Heat Shock Pulse

Teruya Tamaru; Mitsuru Hattori; Kousuke Honda; Ivor J. Benjamin; Takeaki Ozawa; Ken Takamatsu

Circadian rhythms are the general physiological processes of adaptation to daily environmental changes, such as the temperature cycle. A change in temperature is a resetting cue for mammalian circadian oscillators, which are possibly regulated by the heat shock (HS) pathway. The HS response (HSR) is a universal process that provides protection against stressful conditions, which promote protein-denaturation. Heat shock factor 1 (HSF1) is essential for HSR. In the study presented here, we investigated whether a short-term HS pulse can reset circadian rhythms. Circadian Per2 rhythm and HSF1-mediated gene expression were monitored by a real-time bioluminescence assay for mPer2 promoter-driven luciferase and HS element (HSE; HSF1-binding site)-driven luciferase activity, respectively. By an optimal duration HS pulse (43°C for approximately 30 minutes), circadian Per2 rhythm was observed in the whole mouse fibroblast culture, probably indicating the synchronization of the phases of each cell. This rhythm was preceded by an acute elevation in mPer2 and HSF1-mediated gene expression. Mutations in the two predicted HSE sites adjacent (one of them proximally) to the E-box in the mPer2 promoter dramatically abolished circadian mPer2 rhythm. Circadian Per2 gene/protein expression was not observed in HSF1-deficient cells. These findings demonstrate that HSF1 is essential to the synchronization of circadian rhythms by the HS pulse. Importantly, the interaction between HSF1 and BMAL1:CLOCK heterodimer, a central circadian transcription factor, was observed after the HS pulse. These findings reveal that even a short-term HS pulse can reset circadian rhythms and cause the HSF1-BMAL1:CLOCK interaction, suggesting the pivotal role of crosstalk between the mammalian circadian and HSR systems.

Collaboration


Dive into the Takeaki Ozawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Moritoshi Sato

National Presto Industries

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sung Bae Kim

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge