Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takeaki Shimokawa is active.

Publication


Featured researches published by Takeaki Shimokawa.


PLOS Computational Biology | 2009

Relating Neuronal Firing Patterns to Functional Differentiation of Cerebral Cortex

Shigeru Shinomoto; Hideaki Kim; Takeaki Shimokawa; Nanae Matsuno; Shintaro Funahashi; Keisetsu Shima; Ichiro Fujita; Hiroshi Tamura; Taijiro Doi; Kenji Kawano; Naoko Inaba; Kikuro Fukushima; Sergei Kurkin; Kiyoshi Kurata; Masato Taira; Ken-Ichiro Tsutsui; Hidehiko Komatsu; Tadashi Ogawa; Kowa Koida; Jun Tanji; Keisuke Toyama

It has been empirically established that the cerebral cortical areas defined by Brodmann one hundred years ago solely on the basis of cellular organization are closely correlated to their function, such as sensation, association, and motion. Cytoarchitectonically distinct cortical areas have different densities and types of neurons. Thus, signaling patterns may also vary among cytoarchitectonically unique cortical areas. To examine how neuronal signaling patterns are related to innate cortical functions, we detected intrinsic features of cortical firing by devising a metric that efficiently isolates non-Poisson irregular characteristics, independent of spike rate fluctuations that are caused extrinsically by ever-changing behavioral conditions. Using the new metric, we analyzed spike trains from over 1,000 neurons in 15 cortical areas sampled by eight independent neurophysiological laboratories. Analysis of firing-pattern dissimilarities across cortical areas revealed a gradient of firing regularity that corresponded closely to the functional category of the cortical area; neuronal spiking patterns are regular in motor areas, random in the visual areas, and bursty in the prefrontal area. Thus, signaling patterns may play an important role in function-specific cerebral cortical computation.


Neural Computation | 2009

Estimating instantaneous irregularity of neuronal firing

Takeaki Shimokawa; Shigeru Shinomoto

Cortical neurons in vivo had been regarded as Poisson spike generators that convey no information other than the rate of random firing. Recently, using a metric for analyzing local variation of interspike intervals, researchers have found that individual neurons express specific patterns in generating spikes, which may symbolically be termed regular, random, or bursty, rather invariantly in time. In order to study the dynamics of firing patterns in greater detail, we propose here a Bayesian method for estimating firing irregularity and the firing rate simultaneously for a given spike sequence, and we implement an algorithm that may render the empirical Bayesian estimation practicable for data comprising a large number of spikes. Application of this method to electrophysiological data revealed a subtle correlation between the degree of firing irregularity and the firing rate for individual neurons. Irregularity of firing did not deviate greatly around the low degree of dependence on the firing rate and remained practically unchanged for individual neurons in the cortical areas V1 and MT, whereas it fluctuated greatly in the lateral geniculate nucleus of the thalamus. This indicates the presence and absence of autocontrolling mechanisms for maintaining patterns of firing in the cortex and thalamus, respectively.


Optics Express | 2012

Hierarchical Bayesian estimation improves depth accuracy and spatial resolution of diffuse optical tomography

Takeaki Shimokawa; Takashi Kosaka; Okito Yamashita; Nobuo Hiroe; Takashi Amita; Yoshihiro Inoue; Masa-aki Sato

High-density diffuse optical tomography (HD-DOT) is an emerging technique for visualizing the internal state of biological tissues. The large number of overlapping measurement channels due to the use of high-density probe arrays permits the reconstruction of the internal optical properties, even with a reflectance-only measurement. However, accurate three-dimensional reconstruction is still a challenging problem. First, the exponentially decaying sensitivity causes a systematic depth-localization error. Second, the nature of diffusive light makes the image blurred. In this paper, we propose a three-dimensional reconstruction method that overcomes these two problems by introducing sensitivity-normalized regularization and sparsity into the hierarchical Bayesian method. Phantom experiments were performed to validate the proposed method under three conditions of probe interval: 26 mm, 18.4 mm, and 13 mm. We found that two absorbers with distances shorter than the probe interval could be discriminated under the high-density conditions of 18.4-mm and 13-mm intervals. This discrimination ability was possible even if the depths of the two absorbers were different from each other. These results show the high spatial resolution of the proposed method in both depth and horizontal directions.


The Journal of Neuroscience | 2014

Perceptual gloss parameters are encoded by population responses in the monkey inferior temporal cortex.

Akiko Nishio; Takeaki Shimokawa; Naokazu Goda; Hidehiko Komatsu

There are neurons localized in the lower bank of the superior temporal sulcus (STS) in the inferior temporal (IT) cortex of the monkey that selectively respond to specific ranges of gloss characterized by combinations of three physical reflectance parameters: specular reflectance (ρs), diffuse reflectance (ρd), and spread of specular reflection (α; Nishio et al., 2012). In the present study, we examined how the activities of these gloss-selective IT neurons are related to perceived gloss. In an earlier psychophysical study, Ferwerda et al. (2001) identified a perceptually uniform gloss space defined by two axes where the c-axis corresponds to a nonlinear combination of ρs and ρd and the d-axis corresponds to 1 − α. In the present study, we tested the responses of gloss-selective neurons to stimuli in the perceptual gloss space defined by the c- and d-axes. We found that gloss-selective neurons systematically changed their responses in the perceptual gloss space, and the distribution of the tuning directions of the population of gloss-selective neurons is biased toward directions in which perceived gloss increases. We also found that a set of perceptual gloss parameters as well as surface albedo can be well explained by the population activities of gloss-selective neurons, and that these parameters are likely encoded by the gloss-selective neurons in this area of the STS to represent various glosses. These results thus provide evidence that the IT cortex represents perceptual gloss space.


Journal of Computational Neuroscience | 2010

A characterization of the time-rescaled gamma process as a model for spike trains

Takeaki Shimokawa; Shinsuke Koyama; Shigeru Shinomoto

The occurrence of neuronal spikes may be characterized by not only the rate but also the irregularity of firing. We have recently developed a Bayes method for characterizing a sequence of spikes in terms of instantaneous rate and irregularity, assuming that interspike intervals (ISIs) are drawn from a distribution whose shape may vary in time. Though any parameterized family of ISI distribution can be installed in the Bayes method, the ability to detect firing characteristics may depend on the choice of a family of distribution. Here, we select a set of ISI metrics that may effectively characterize spike patterns and determine the distribution that may extract these characteristics. The set of the mean ISI and the mean log ISI are uniquely selected based on the statistical orthogonality, and accordingly the corresponding distribution is the gamma distribution. By applying the Bayes method equipped with the gamma distribution to spike sequences derived from different ISI distributions such as the log-normal and inverse-Gaussian distribution, we confirm that the gamma distribution effectively extracts the rate and the shape factor.


The Journal of Neuroscience | 2016

Similarity in Neuronal Firing Regimes across Mammalian Species

Yasuhiro Mochizuki; Tomokatsu Onaga; Hideaki Shimazaki; Takeaki Shimokawa; Yasuhiro Tsubo; Rie Kimura; Akiko Saiki; Yutaka Sakai; Yoshikazu Isomura; Shigeyoshi Fujisawa; Ken Ichi Shibata; Daichi Hirai; Takahiro Furuta; Takeshi Kaneko; Susumu Takahashi; Tomoaki Nakazono; Seiya Ishino; Yoshio Sakurai; Takashi Kitsukawa; Jong Won Lee; Hyun Jung Lee; Min Whan Jung; Cecilia Babul; Pedro Maldonado; Kazutaka Takahashi; Fritzie I. Arce-McShane; Callum F. Ross; Barry J. Sessle; Nicholas G. Hatsopoulos; Thomas Brochier

The architectonic subdivisions of the brain are believed to be functional modules, each processing parts of global functions. Previously, we showed that neurons in different regions operate in different firing regimes in monkeys. It is possible that firing regimes reflect differences in underlying information processing, and consequently the firing regimes in homologous regions across animal species might be similar. We analyzed neuronal spike trains recorded from behaving mice, rats, cats, and monkeys. The firing regularity differed systematically, with differences across regions in one species being greater than the differences in similar areas across species. Neuronal firing was consistently most regular in motor areas, nearly random in visual and prefrontal/medial prefrontal cortical areas, and bursting in the hippocampus in all animals examined. This suggests that firing regularity (or irregularity) plays a key role in neural computation in each functional subdivision, depending on the types of information being carried. SIGNIFICANCE STATEMENT By analyzing neuronal spike trains recorded from mice, rats, cats, and monkeys, we found that different brain regions have intrinsically different firing regimes that are more similar in homologous areas across species than across areas in one species. Because different regions in the brain are specialized for different functions, the present finding suggests that the different activity regimes of neurons are important for supporting different functions, so that appropriate neuronal codes can be used for different modalities.


Biomedical Optics Express | 2013

Extended hierarchical Bayesian diffuse optical tomography for removing scalp artifact.

Takeaki Shimokawa; Takashi Kosaka; Okito Yamashita; Nobuo Hiroe; Takashi Amita; Yoshihiro Inoue; Masa-aki Sato

Functional near-infrared spectroscopy (fNIRS) can non-invasively measure hemodynamic responses in the cerebral cortex with a portable apparatus. However, the observation signal in fNIRS measurements is contaminated by the artifact signal from the hemodynamic response in the scalp. In this paper, we propose a method to separate the signals from the cortex and the scalp by estimating both hemodynamic changes by diffuse optical tomography (DOT). In the inverse problem of DOT, we introduce smooth regularization to the hemodynamic change in the scalp and sparse regularization to that in the cortex based on the nature of the hemodynamic responses. These appropriate regularization models, with the spatial information of optical paths of many measurement channels, allow three-dimensional reconstruction of both hemodynamic changes. We validate our proposed method through two-layer phantom experiments and MRI-based head-model simulations. In both experiments, the proposed method simultaneously estimates the superficial smooth activity in the scalp area and the deep localized activity in the cortical area.


NeuroImage | 2016

Multi-subject and multi-task experimental validation of the hierarchical Bayesian diffuse optical tomography algorithm

Okito Yamashita; Takeaki Shimokawa; Ryota Aisu; Takashi Amita; Yoshihiro Inoue; Masa-aki Sato

Diffuse optical tomography (DOT) is an emerging technology for improving the spatial resolution and spatial specificity of conventional multi-channel near-infrared spectroscopy (NIRS) by the use of high-density measurements and an image reconstruction algorithm. We recently proposed a hierarchical Bayesian DOT algorithm that allows for accurate simultaneous reconstruction of scalp and cortical hemodynamic changes, and verified its performance with a phantom experiment, a computer simulation, and experimental data from one human subject. We extend our previous human case study to a multi-subject, multi-task study, to demonstrate the validity of the algorithm on a wider population and varied task conditions. We measured brain activity during three graded tasks (hand movement, index finger movement, and no-movement), in 12 subjects, using high-density NIRS and functional magnetic resonance imaging (fMRI), acquired in different sessions. The reconstruction performance of our algorithm, and the current gold-standard method for DOT image reconstruction, were evaluated using the blood-oxygenation-level-dependent (BOLD) signals of the fMRI as a reference. In comparison with the BOLD signals, our method achieved a median localization error of 6 and 8mm, and a spatial-pattern similarity of 0.6 and 0.4 for the hand and finger tasks, respectively. It also did not reconstruct any activity in the no-movement task. Compared with the current gold-standard method, the new method showed fewer false positives, which resulted in improved spatial-pattern similarity, although the localization errors of the main activity clusters were comparable.


PLOS ONE | 2017

Anodal transcranial direct current stimulation of the right anterior temporal lobe did not significantly affect verbal insight

Takatsugu Aihara; Takeshi Ogawa; Takeaki Shimokawa; Okito Yamashita

Humans often utilize past experience to solve difficult problems. However, if past experience is insufficient to solve a problem, solvers may reach an impasse. Insight can be valuable for breaking an impasse, enabling the reinterpretation or re-representation of a problem. Previous studies using between-subjects designs have revealed a causal relationship between the anterior temporal lobes (ATLs) and non-verbal insight, by enhancing the right ATL while inhibiting the left ATL using transcranial direct current stimulation (tDCS). In addition, neuroimaging studies have reported a correlation between right ATL activity and verbal insight. Based on these findings, we hypothesized that the right ATL is causally related to both non-verbal and verbal insight. To test this hypothesis, we conducted an experiment with 66 subjects using a within-subjects design, which typically has greater statistical power than a between-subjects design. Subjects participated in tDCS experiments across 2 days, in which they solved both non-verbal and verbal insight problems under active or sham stimulation conditions. To dissociate the effects of right ATL stimulation from those of left ATL stimulation, we used two montage types; anodal tDCS of the right ATL together with cathodal tDCS of the left ATL (stimulating both ATLs) and anodal tDCS of the right ATL with cathodal tDCS of the left cheek (stimulating only the right ATL). The montage used was counterbalanced across subjects. Statistical analyses revealed that, regardless of the montage type, there were no significant differences between the active and sham conditions for either verbal or non-verbal insight, although the finding for non-verbal insight was inconclusive because of a lack of statistical power. These results failed to support previous findings suggesting that the right ATL is the central locus of insight.


Physical Review E | 2010

Synchronization of uncoupled oscillators by common gamma impulses: From phase locking to noise-induced synchronization.

Shigefumi Hata; Takeaki Shimokawa; Kensuke Arai; Hiroya Nakao

Nonlinear oscillators can mutually synchronize when they are driven by common external impulses. Two important scenarios are (i) synchronization resulting from phase locking of each oscillator to regular periodic impulses and (ii) noise-induced synchronization caused by the Poisson random impulses, but their difference has not been fully quantified. Here, we analyze a pair of uncoupled oscillators subject to common random impulses with gamma-distributed intervals, which can be smoothly interpolated between the regular periodic and the random Poisson impulses. Their dynamics are characterized by phase distributions, frequency detuning, Lyapunov exponents, and information-theoretic measures, which clearly reveal the differences between the two synchronization scenarios.

Collaboration


Dive into the Takeaki Shimokawa's collaboration.

Top Co-Authors

Avatar

Okito Yamashita

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

Masa-aki Sato

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar

Takashi Kosaka

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akiko Nishio

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge