Takefumi Morizumi
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Takefumi Morizumi.
Nature | 2011
Hui-Woog Choe; Yong Ju Kim; Jung Hee Park; Takefumi Morizumi; Emil F. Pai; Norbert Krauss; Klaus Peter Hofmann; Patrick Scheerer; Oliver P. Ernst
G-protein-coupled receptors (GPCRs) are seven transmembrane helix (TM) proteins that transduce signals into living cells by binding extracellular ligands and coupling to intracellular heterotrimeric G proteins (Gαβγ). The photoreceptor rhodopsin couples to transducin and bears its ligand 11-cis-retinal covalently bound via a protonated Schiff base to the opsin apoprotein. Absorption of a photon causes retinal cis/trans isomerization and generates the agonist all-trans-retinal in situ. After early photoproducts, the active G-protein-binding intermediate metarhodopsin II (Meta II) is formed, in which the retinal Schiff base is still intact but deprotonated. Dissociation of the proton from the Schiff base breaks a major constraint in the protein and enables further activating steps, including an outward tilt of TM6 and formation of a large cytoplasmic crevice for uptake of the interacting C terminus of the Gα subunit. Owing to Schiff base hydrolysis, Meta II is short-lived and notoriously difficult to crystallize. We therefore soaked opsin crystals with all-trans-retinal to form Meta II, presuming that the crystal’s high concentration of opsin in an active conformation (Ops*) may facilitate all-trans-retinal uptake and Schiff base formation. Here we present the 3.0 Å and 2.85 Å crystal structures, respectively, of Meta II alone or in complex with an 11-amino-acid C-terminal fragment derived from Gα (GαCT2). GαCT2 binds in a large crevice at the cytoplasmic side, akin to the binding of a similar Gα-derived peptide to Ops* (ref. 7). In the Meta II structures, the electron density from the retinal ligand seamlessly continues into the Lys 296 side chain, reflecting proper formation of the Schiff base linkage. The retinal is in a relaxed conformation and almost undistorted compared with pure crystalline all-trans-retinal. By comparison with early photoproducts we propose how retinal translocation and rotation induce the gross conformational changes characteristic for Meta II. The structures can now serve as models for the large GPCR family.
Journal of Biological Chemistry | 2011
Timothy H. Bayburt; Sergey A. Vishnivetskiy; Mark A. McLean; Takefumi Morizumi; Chih Chin Huang; John J. G. Tesmer; Oliver P. Ernst; Stephen G. Sligar; Vsevolod V. Gurevich
G-protein-coupled receptor (GPCR) oligomerization has been observed in a wide variety of experimental contexts, but the functional significance of this phenomenon at different stages of the life cycle of class A GPCRs remains to be elucidated. Rhodopsin (Rh), a prototypical class A GPCR of visual transduction, is also capable of forming dimers and higher order oligomers. The recent demonstration that Rh monomer is sufficient to activate its cognate G protein, transducin, prompted us to test whether the same monomeric state is sufficient for rhodopsin phosphorylation and arrestin-1 binding. Here we show that monomeric active rhodopsin is phosphorylated by rhodopsin kinase (GRK1) as efficiently as rhodopsin in the native disc membrane. Monomeric phosphorylated light-activated Rh (P-Rh*) in nanodiscs binds arrestin-1 essentially as well as P-Rh* in native disc membranes. We also measured the affinity of arrestin-1 for P-Rh* in nanodiscs using a fluorescence-based assay and found that arrestin-1 interacts with monomeric P-Rh* with low nanomolar affinity and 1:1 stoichiometry, as previously determined in native disc membranes. Thus, similar to transducin activation, rhodopsin phosphorylation by GRK1 and high affinity arrestin-1 binding only requires a rhodopsin monomer.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Miyeon Kim; Sergey A. Vishnivetskiy; Ned Van Eps; Nathan Alexander; Whitney M. Cleghorn; Xuanzhi Zhan; Susan Hanson; Takefumi Morizumi; Oliver P. Ernst; Jens Meiler; Vsevolod V. Gurevich; Wayne L. Hubbell
Arrestin-1 (visual arrestin) binds to light-activated phosphorylated rhodopsin (P-Rh*) to terminate G-protein signaling. To map conformational changes upon binding to the receptor, pairs of spin labels were introduced in arrestin-1 and double electron–electron resonance was used to monitor interspin distance changes upon P-Rh* binding. The results indicate that the relative position of the N and C domains remains largely unchanged, contrary to expectations of a “clam-shell” model. A loop implicated in P-Rh* binding that connects β-strands V and VI (the “finger loop,” residues 67–79) moves toward the expected location of P-Rh* in the complex, but does not assume a fully extended conformation. A striking and unexpected movement of a loop containing residue 139 away from the adjacent finger loop is observed, which appears to facilitate P-Rh* binding. This change is accompanied by smaller movements of distal loops containing residues 157 and 344 at the tips of the N and C domains, which correspond to “plastic” regions of arrestin-1 that have distinct conformations in monomers of the crystal tetramer. Remarkably, the loops containing residues 139, 157, and 344 appear to have high flexibility in both free arrestin-1 and the P-Rh*complex.
Nature Chemistry | 2015
Philip J. M. Johnson; Alexei Halpin; Takefumi Morizumi; Valentyn I. Prokhorenko; Oliver P. Ernst; R. J. Dwayne Miller
The role of vibrational coherence-concerted vibrational motion on the excited-state potential energy surface-in the isomerization of retinal in the protein rhodopsin remains elusive, despite considerable experimental and theoretical efforts. We revisited this problem with resonant ultrafast heterodyne-detected transient-grating spectroscopy. The enhanced sensitivity that this technique provides allows us to probe directly the primary photochemical reaction of vision with sufficient temporal and spectral resolution to resolve all the relevant nuclear dynamics of the retinal chromophore during isomerization. We observed coherent photoproduct formation on a sub-50 fs timescale, and recovered a host of vibrational modes of the retinal chromophore that modulate the transient-grating signal during the isomerization reaction. Through Fourier filtering and subsequent time-domain analysis of the transient vibrational dynamics, the excited-state nuclear motions that drive the isomerization reaction were identified, and comprise stretching, torsional and out-of-plane wagging motions about the local C11=C12 isomerization coordinate.
Journal of Biological Chemistry | 2007
Hiroo Imai; Vladimir J. Kefalov; Keisuke Sakurai; Osamu Chisaka; Yoshiki Ueda; Akishi Onishi; Takefumi Morizumi; Yingbin Fu; Kazuhisa Ichikawa; Kei Nakatani; Yoshihito Honda; Jeannie Chen; King Wai Yau; Yoshinori Shichida
Signal transduction in rod cells begins with photon absorption by rhodopsin and leads to the generation of an electrical response. The response profile is determined by the molecular properties of the phototransduction components. To examine how the molecular properties of rhodopsin correlate with the rod-response profile, we have generated a knock-in mouse with rhodopsin replaced by its E122Q mutant, which exhibits properties different from those of wild-type (WT) rhodopsin. Knock-in mouse rods with E122Q rhodopsin exhibited a photosensitivity about 70% of WT. Correspondingly, their single-photon response had an amplitude about 80% of WT, and a rate of decline from peak about 1.3 times of WT. The overall 30% lower photosensitivity of mutant rods can be explained by a lower pigment photosensitivity (0.9) and the smaller single-photon response (0.8). The slower decline of the response, however, did not correlate with the 10-fold shorter lifetime of the meta-II state of E122Q rhodopsin. This shorter lifetime became evident in the recovery phase of rod cells only when arrestin was absent. Simulation analysis of the photoresponse profile indicated that the slower decline and the smaller amplitude of the single-photon response can both be explained by the shift in the meta-I/meta-II equilibrium of E122Q rhodopsin toward meta-I. The difference in meta-III lifetime between WT and E122Q mutant became obvious in the recovery phase of the dark current after moderate photobleaching of rod cells. Thus, the present study clearly reveals how the molecular properties of rhodopsin affect the amplitude, shape, and kinetics of the rod response.
Angewandte Chemie | 2013
Jung Hee Park; Takefumi Morizumi; Yafang Li; Joo Eun Hong; Emil F. Pai; Klaus Peter Hofmann; Hui-Woog Choe; Oliver P. Ernst
Receptor-ligand interaction: Olfactory receptors (ORs) are G-protein-coupled receptors (GPCRs), which detect signaling molecules such as hormones and odorants. The structure of opsin, the GPCR employed in vision, with a detergent molecule bound deep in its orthosteric ligand-binding pocket provides a template for OR homology modeling, thus enabling investigation of the structural basis of the mechanism of odorant-receptor recognition.
Nature Communications | 2014
Michael A. Goren; Takefumi Morizumi; Indu Menon; Jeremiah S. Joseph; Jeremy S. Dittman; Vadim Cherezov; Raymond C. Stevens; Oliver P. Ernst; Anant K. Menon
Opsin, the rhodopsin apoprotein, was recently shown to be an ATP-independent flippase (or scramblase) that equilibrates phospholipids across photoreceptor disc membranes in mammalian retina, a process required for disc homeostasis. Here we show that scrambling is a constitutive activity of rhodopsin, distinct from its light-sensing function. Upon reconstitution into vesicles, discrete conformational states of the protein (rhodopsin, a metarhodopsin II-mimic, and two forms of opsin) facilitated rapid (>10,000 phospholipids per protein per second) scrambling of phospholipid probes. Our results indicate that the large conformational changes involved in converting rhodopsin to metarhodopsin II are not required for scrambling, and that the lipid translocation pathway either lies near the protein surface or involves membrane packing defects in the vicinity of the protein. Additionally, we demonstrate that β2-adrenergic and adenosine A2A receptors scramble lipids, suggesting that rhodopsin-like G protein-coupled receptors may play an unexpected moonlighting role in re-modeling cell membranes.
Photochemical and Photobiological Sciences | 2005
Hiroo Imai; Shigeki Kuwayama; Akishi Onishi; Takefumi Morizumi; Osamu Chisaka; Yoshinori Shichida
We have investigated the molecular properties of rod and cone visual pigments to elucidate the differences in the molecular mechanism(s) of the photoresponses between rod and cone photoreceptor cells. We have found that the cone pigments exhibit a faster pigment regeneration and faster decay of meta-II and meta-III intermediates than the rod pigment, rhodopsin. Mutagenesis experiments have revealed that the amino acid residues at positions 122 and 189 in the opsins are the determinants for these differences. In order to study the relationship between the molecular properties of visual pigments and the physiology of rod photoreceptors, we used mouse rhodopsin as a model pigment because, by gene-targeting, the spectral properties of the pigment can be directly correlated to the physiology of the cells. In the present paper, we summarize the spectroscopic properties of cone pigments and describe our studies with mouse rhodopsin utilizing a high performance charge coupled device (CCD) spectrophotometer.
Journal of the American Chemical Society | 2011
Matthia S. Elgeti; Roman Kazmin; Martin Heck; Takefumi Morizumi; Eglof Ritter; Patrick Scheerer; Oliver P. Ernst; Friedrich Siebert; Klaus Peter Hofmann; Franz Bartl
Rhodopsin, a seven transmembrane helix (TM) receptor, binds its ligand 11-cis-retinal via a protonated Schiff base. Coupling to the G-protein transducin (G(t)) occurs after light-induced cis/trans-retinal isomerization, which leads through photoproducts into a sequence of metarhodopsin (Meta) states: Meta I ⇌ Meta IIa ⇌ Meta IIb ⇌ Meta IIbH(+). The structural changes behind this three-step activation scheme are mediated by microswitch domains consisting of conserved amino acids. Here we focus on Tyr223(5.58) as part of the Y(5.58)X(7)K(R)(5.66) motif. Mutation to Ala, Phe, or Glu results in specific impairments of G(t)-activation measured by intrinsic G(t) fluorescence. UV-vis/FTIR spectroscopy of rhodopsin and its complex with a C-terminal G(t)α peptide allows the assignment of these deficiencies to specific steps in the activation path. Effects of mutation occur already in Meta I but do not directly influence deprotonation of the Schiff base during formation of Meta IIa. Absence of the whole phenol ring (Y223A) allows the activating motion of TM6 in Meta IIb but impairs the coupling to G(t). When only the hydroxyl group is lacking (Y223F), Meta IIb does not accumulate, but the activity toward G(t) remains substantial. From the FTIR features of Meta IIbH(+) we conclude that proton uptake to Glu134(3.49) is mandatory for Tyr223(5.58) to engage in the interaction with the key player Arg135(3.50) predicted by X-ray analysis. This polar interaction is partially recovered in Y223E, explaining its relatively high activity. Only the phenol side chain of tyrosine provides all characteristics for accumulation of the active state and G-protein activation.
Journal of Biological Chemistry | 2014
Dar'ya S. Redka; Takefumi Morizumi; Gwendolynne Elmslie; Pranavan Paranthaman; Rabindra V. Shivnaraine; John Ellis; Oliver P. Ernst; James W. Wells
Background: The allosteric interaction between agonists and guanylyl nucleotides reports on the interaction between G protein-coupled receptors and G proteins. Results: Such allostery differs in kind between reconstituted monomers and tetramers of the M2 muscarinic receptor. Conclusion: Monomers and tetramers mediate allostery via different mechanisms. Significance: Only tetramers resemble muscarinic receptors in myocardial membranes in the nature of their sensitivity to guanylyl nucleotides. G protein-coupled receptors can be reconstituted as monomers in nanodiscs and as tetramers in liposomes. When reconstituted with G proteins, both forms enable an allosteric interaction between agonists and guanylyl nucleotides. Both forms, therefore, are candidates for the complex that controls signaling at the level of the receptor. To identify the biologically relevant form, reconstituted monomers and tetramers of the purified M2 muscarinic receptor were compared with muscarinic receptors in sarcolemmal membranes for the effect of guanosine 5′-[β,γ-imido]triphosphate (GMP-PNP) on the inhibition of N-[3H]methylscopolamine by the agonist oxotremorine-M. With monomers, a stepwise increase in the concentration of GMP-PNP effected a lateral, rightward shift in the semilogarithmic binding profile (i.e. a progressive decrease in the apparent affinity of oxotremorine-M). With tetramers and receptors in sarcolemmal membranes, GMP-PNP effected a vertical, upward shift (i.e. an apparent redistribution of sites from a state of high affinity to one of low affinity with no change in affinity per se). The data were analyzed in terms of a mechanistic scheme based on a ligand-regulated equilibrium between uncoupled and G protein-coupled receptors (the “ternary complex model”). The model predicts a rightward shift in the presence of GMP-PNP and could not account for the effects at tetramers in vesicles or receptors in sarcolemmal membranes. Monomers present a special case of the model in which agonists and guanylyl nucleotides interact within a complex that is both constitutive and stable. The results favor oligomers of the M2 receptor over monomers as the biologically relevant state for coupling to G proteins.