Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takehide Kosuge is active.

Publication


Featured researches published by Takehide Kosuge.


Nucleic Acids Research | 2006

Escherichia coli K-12: a cooperatively developed annotation snapshot—2005

Monica Riley; Takashi Abe; Martha B. Arnaud; Mary K.B. Berlyn; Frederick R. Blattner; Roy R. Chaudhuri; Jeremy D. Glasner; Takashi Horiuchi; Ingrid M. Keseler; Takehide Kosuge; Hirotada Mori; Nicole T. Perna; Guy Plunkett; Kenneth E. Rudd; Margrethe H. Serres; Gavin H. Thomas; Nicholas R. Thomson; David S. Wishart; Barry L. Wanner

The goal of this group project has been to coordinate and bring up-to-date information on all genes of Escherichia coli K-12. Annotation of the genome of an organism entails identification of genes, the boundaries of genes in terms of precise start and end sites, and description of the gene products. Known and predicted functions were assigned to each gene product on the basis of experimental evidence or sequence analysis. Since both kinds of evidence are constantly expanding, no annotation is complete at any moment in time. This is a snapshot analysis based on the most recent genome sequences of two E.coli K-12 bacteria. An accurate and up-to-date description of E.coli K-12 genes is of particular importance to the scientific community because experimentally determined properties of its gene products provide fundamental information for annotation of innumerable genes of other organisms. Availability of the complete genome sequence of two K-12 strains allows comparison of their genotypes and mutant status of alleles.


Nucleic Acids Research | 2011

DDBJ progress report

Eli Kaminuma; Takehide Kosuge; Yuichi Kodama; Hideo Aono; Jun Mashima; Takashi Gojobori; Hideaki Sugawara; Osamu Ogasawara; Toshihisa Takagi; Kousaku Okubo; Yasukazu Nakamura

The DNA Data Bank of Japan (DDBJ, http://www.ddbj.nig.ac.jp) provides a nucleotide sequence archive database and accompanying database tools for sequence submission, entry retrieval and annotation analysis. The DDBJ collected and released 3 637 446 entries/2 272 231 889 bases between July 2009 and June 2010. A highlight of the released data was archive datasets from next-generation sequencing reads of Japanese rice cultivar, Koshihikari submitted by the National Institute of Agrobiological Sciences. In this period, we started a new archive for quantitative genomics data, the DDBJ Omics aRchive (DOR). The DOR stores quantitative data both from the microarray and high-throughput new sequencing platforms. Moreover, we improved the content of the DDBJ patent sequence, released a new submission tool of the DDBJ Sequence Read Archive (DRA) which archives massive raw sequencing reads, and enhanced a cloud computing-based analytical system from sequencing reads, the DDBJ Read Annotation Pipeline. In this article, we describe these new functions of the DDBJ databases and support tools.


Nucleic Acids Research | 2016

DNA data bank of Japan (DDBJ) progress report

Jun Mashima; Yuichi Kodama; Takehide Kosuge; Takatomo Fujisawa; Toshiaki Katayama; Hideki Nagasaki; Yoshihiro Okuda; Eli Kaminuma; Osamu Ogasawara; Kousaku Okubo; Yasukazu Nakamura; Toshihisa Takagi

The DNA Data Bank of Japan Center (DDBJ Center; http://www.ddbj.nig.ac.jp) maintains and provides public archival, retrieval and analytical services for biological information. The contents of the DDBJ databases are shared with the US National Center for Biotechnology Information (NCBI) and the European Bioinformatics Institute (EBI) within the framework of the International Nucleotide Sequence Database Collaboration (INSDC). Since 2013, the DDBJ Center has been operating the Japanese Genotype-phenotype Archive (JGA) in collaboration with the National Bioscience Database Center (NBDC) in Japan. In addition, the DDBJ Center develops semantic web technologies for data integration and sharing in collaboration with the Database Center for Life Science (DBCLS) in Japan. This paper briefly reports on the activities of the DDBJ Center over the past year including submissions to databases and improvements in our services for data retrieval, analysis, and integration.


Mbio | 2012

Comparative Genome Analysis of Three Eukaryotic Parasites with Differing Abilities To Transform Leukocytes Reveals Key Mediators of Theileria-Induced Leukocyte Transformation

Kyoko Hayashida; Yuichiro Hara; Takashi Abe; Chisato Yamasaki; Atsushi Toyoda; Takehide Kosuge; Yutaka Suzuki; Yoshiharu Sato; Shuichi Kawashima; Toshiaki Katayama; Hiroyuki Wakaguri; Noboru Inoue; Keiichi Homma; Masahito Tada-Umezaki; Yukio Yagi; Yasuyuki Fujii; Takuya Habara; Minoru Kanehisa; Hidemi Watanabe; Kimihito Ito; Takashi Gojobori; Hideaki Sugawara; Tadashi Imanishi; William Weir; Malcolm J. Gardner; Arnab Pain; Brian Shiels; Masahira Hattori; Vishvanath Nene; Chihiro Sugimoto

ABSTRACT We sequenced the genome of Theileria orientalis, a tick-borne apicomplexan protozoan parasite of cattle. The focus of this study was a comparative genome analysis of T. orientalis relative to other highly pathogenic Theileria species, T. parva and T. annulata. T. parva and T. annulata induce transformation of infected cells of lymphocyte or macrophage/monocyte lineages; in contrast, T. orientalis does not induce uncontrolled proliferation of infected leukocytes and multiplies predominantly within infected erythrocytes. While synteny across homologous chromosomes of the three Theileria species was found to be well conserved overall, subtelomeric structures were found to differ substantially, as T. orientalis lacks the large tandemly arrayed subtelomere-encoded variable secreted protein-encoding gene family. Moreover, expansion of particular gene families by gene duplication was found in the genomes of the two transforming Theileria species, most notably, the TashAT/TpHN and Tar/Tpr gene families. Gene families that are present only in T. parva and T. annulata and not in T. orientalis, Babesia bovis, or Plasmodium were also identified. Identification of differences between the genome sequences of Theileria species with different abilities to transform and immortalize bovine leukocytes will provide insight into proteins and mechanisms that have evolved to induce and regulate this process. The T. orientalis genome database is available at http://totdb.czc.hokudai.ac.jp/. IMPORTANCE Cancer-like growth of leukocytes infected with malignant Theileria parasites is a unique cellular event, as it involves the transformation and immortalization of one eukaryotic cell by another. In this study, we sequenced the whole genome of a nontransforming Theileria species, Theileria orientalis, and compared it to the published sequences representative of two malignant, transforming species, T. parva and T. annulata. The genome-wide comparison of these parasite species highlights significant genetic diversity that may be associated with evolution of the mechanism(s) deployed by an intracellular eukaryotic parasite to transform its host cell. Cancer-like growth of leukocytes infected with malignant Theileria parasites is a unique cellular event, as it involves the transformation and immortalization of one eukaryotic cell by another. In this study, we sequenced the whole genome of a nontransforming Theileria species, Theileria orientalis, and compared it to the published sequences representative of two malignant, transforming species, T. parva and T. annulata. The genome-wide comparison of these parasite species highlights significant genetic diversity that may be associated with evolution of the mechanism(s) deployed by an intracellular eukaryotic parasite to transform its host cell.


Nucleic Acids Research | 2014

DDBJ progress report: a new submission system for leading to a correct annotation

Takehide Kosuge; Jun Mashima; Yuichi Kodama; Takatomo Fujisawa; Eli Kaminuma; Osamu Ogasawara; Kousaku Okubo; Toshihisa Takagi; Yasukazu Nakamura

The DNA Data Bank of Japan (DDBJ; http://www.ddbj.nig.ac.jp) maintains and provides archival, retrieval and analytical resources for biological information. This database content is shared with the US National Center for Biotechnology Information (NCBI) and the European Bioinformatics Institute (EBI) within the framework of the International Nucleotide Sequence Database Collaboration (INSDC). DDBJ launched a new nucleotide sequence submission system for receiving traditional nucleotide sequence. We expect that the new submission system will be useful for many submitters to input accurate annotation and reduce the time needed for data input. In addition, DDBJ has started a new service, the Japanese Genotype–phenotype Archive (JGA), with our partner institute, the National Bioscience Database Center (NBDC). JGA permanently archives and shares all types of individual human genetic and phenotypic data. We also introduce improvements in the DDBJ services and databases made during the past year.


Nucleic Acids Research | 2015

The DDBJ Japanese Genotype-phenotype Archive for genetic and phenotypic human data

Yuichi Kodama; Jun Mashima; Takehide Kosuge; Toshiaki Katayama; Takatomo Fujisawa; Eli Kaminuma; Osamu Ogasawara; Kousaku Okubo; Toshihisa Takagi; Yasukazu Nakamura

The DNA Data Bank of Japan Center (DDBJ Center; http://www.ddbj.nig.ac.jp) maintains and provides public archival, retrieval and analytical services for biological information. Since October 2013, DDBJ Center has operated the Japanese Genotype-phenotype Archive (JGA) in collaboration with our partner institute, the National Bioscience Database Center (NBDC) of the Japan Science and Technology Agency. DDBJ Center provides the JGA database system which securely stores genotype and phenotype data collected from individuals whose consent agreements authorize data release only for specific research use. NBDC has established guidelines and policies for sharing human-derived data and reviews data submission and usage requests from researchers. In addition to the JGA project, DDBJ Center develops Semantic Web technologies for data integration and sharing in collaboration with the Database Center for Life Science. This paper describes the overview of the JGA project, updates to the DDBJ databases, and services for data retrieval, analysis and integration.


Nucleic Acids Research | 2018

DNA Data Bank of Japan: 30th anniversary

Yuichi Kodama; Jun Mashima; Takehide Kosuge; Eli Kaminuma; Osamu Ogasawara; Kousaku Okubo; Yasukazu Nakamura; Toshihisa Takagi

Abstract The DNA Data Bank of Japan (DDBJ) Center (http://www.ddbj.nig.ac.jp) has been providing public data services for 30 years since 1987. We are collecting nucleotide sequence data and associated biological information from researchers as a member of the International Nucleotide Sequence Database Collaboration (INSDC), in collaboration with the US National Center for Biotechnology Information and the European Bioinformatics Institute. The DDBJ Center also services the Japanese Genotype-phenotype Archive (JGA) with the National Bioscience Database Center to collect genotype and phenotype data of human individuals. Here, we outline our database activities for INSDC and JGA over the past year, and introduce submission, retrieval and analysis services running on our supercomputer system and their recent developments. Furthermore, we highlight our responses to the amended Japanese rules for the protection of personal information and the launch of the DDBJ Group Cloud service for sharing pre-publication data among research groups.


Genome Announcements | 2015

Complete Genome Sequence of Pseudomonas aeruginosa Strain 8380, Isolated from the Human Gut

Yu-ki Ichise; Takehide Kosuge; Maki Uwate; Taiji Nakae; Hideaki Maseda

ABSTRACT Pseudomonas aeruginosa shows multidrug resistance, which is mainly attributable to its expression of xenobiotic efflux pumps. However, it is unclear how silent pumps are expressed in clinical isolates. Here, we sequenced the complete genome of P. aeruginosa strain 8380, which was isolated from a human gut.


Nucleic Acids Research | 2018

DDBJ update: the Genomic Expression Archive (GEA) for functional genomics data

Yuichi Kodama; Jun Mashima; Takehide Kosuge; Osamu Ogasawara

Abstract The Genomic Expression Archive (GEA) for functional genomics data from microarray and high-throughput sequencing experiments has been established at the DNA Data Bank of Japan (DDBJ) Center (https://www.ddbj.nig.ac.jp), which is a member of the International Nucleotide Sequence Database Collaboration (INSDC) with the US National Center for Biotechnology Information and the European Bioinformatics Institute. The DDBJ Center collects nucleotide sequence data and associated biological information from researchers and also services the Japanese Genotype–phenotype Archive (JGA) with the National Bioscience Database Center for collecting human data. To automate the submission process, we have implemented the DDBJ BioSample validator which checks submitted records, auto-corrects their format, and issues error messages and warnings if necessary. The DDBJ Center also operates the NIG supercomputer, prepared for analyzing large-scale genome sequences. We now offer a secure platform specifically to handle personal human genomes. This report describes database activities for INSDC and JGA over the past year, the newly launched GEA, submission, retrieval, and analysis services available in our supercomputer system and their recent developments.


Genome Research | 1999

A Prokaryotic Gene Cluster Involved in Synthesis of Lysine through the Amino Adipate Pathway: A Key to the Evolution of Amino Acid Biosynthesis

Hiromi Nishida; Makoto Nishiyama; Nobuyuki Kobashi; Takehide Kosuge; Takayuki Hoshino; Hisakazu Yamane

Collaboration


Dive into the Takehide Kosuge's collaboration.

Top Co-Authors

Avatar

Jun Mashima

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar

Yuichi Kodama

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar

Osamu Ogasawara

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar

Eli Kaminuma

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar

Kousaku Okubo

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yasukazu Nakamura

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hideaki Sugawara

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar

Takatomo Fujisawa

National Institute of Genetics

View shared research outputs
Researchain Logo
Decentralizing Knowledge