Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takehiko Tosha is active.

Publication


Featured researches published by Takehiko Tosha.


Nature Structural & Molecular Biology | 2012

Crystal structure of quinol-dependent nitric oxide reductase from Geobacillus stearothermophilus

Yushi Matsumoto; Takehiko Tosha; Tomoya Hino; Hiroshi Sugimoto; Shingo Nagano; Yuji Sugita; Yoshitsugu Shiro

The structure of quinol-dependent nitric oxide reductase (qNOR) from G. stearothermophilus, which catalyzes the reduction of NO to produce the major ozone-depleting gas N2O, has been characterized at 2.5 Å resolution. The overall fold of qNOR is similar to that of cytochrome c–dependent NOR (cNOR), and some structural features that are characteristic of cNOR, such as the calcium binding site and hydrophilic cytochrome c domain, are observed in qNOR, even though it harbors no heme c. In contrast to cNOR, structure-based mutagenesis and molecular dynamics simulation studies of qNOR suggest that a water channel from the cytoplasm can serve as a proton transfer pathway for the catalytic reaction. Further structural comparison of qNOR with cNOR and aerobic and microaerobic respiratory oxidases elucidates their evolutionary relationship and possible functional conversions.


Inorganic Chemistry | 2008

Transient Intermediates from Mn(salen) with Sterically Hindered Mesityl Groups: Interconversion between MnIV-Phenolate and MnIII-Phenoxyl Radicals as an Origin for Unique Reactivity

Takuya Kurahashi; Akihiro Kikuchi; Takehiko Tosha; Yoshitsugu Shiro; Teizo Kitagawa; Hiroshi Fujii

In order to reveal structure-reactivity relationships for the high catalytic activity of the epoxidation catalyst Mn(salen), transient intermediates are investigated. Steric hindrance incorporated to the salen ligand enables highly selective generation of three related intermediates, OMnIV(salen), HO-Mn IV(salen), and H2O-MnIII(salen (+*)), each of which is thoroughly characterized using various spectroscopic techniques including UV-vis, electron paramagnetic resonance, resonance Raman, electrospray ionization mass spectrometry, 2H NMR, and X-ray absorption spectroscopy. These intermediates are all one-electron oxidized from the starting MnIII(salen) precursor but differ only in the degree of protonation. However, structural and electronic features are strikingly different: The Mn-O bond length of HO-MnIV(salen) (1.83 A) is considerably longer than that of OMnIV(salen) (1.58 A); the electronic configuration of H2O-MnIII(salen (+*)) is MnIII-phenoxyl radical, while those of OMnIV(salen) and HO-MnIV(salen) are MnIV-phenolate. Among OMnIV(salen), HO-MnIV(salen), and H2O-MnIII(salen (+*)), only the OMnIV(salen) can transfer oxygen to phosphine and sulfide substrates, as well as abstract hydrogen from weak C-H bonds, although the oxidizing power is not enough to epoxidize olefins. The high activity of Mn(salen) is a direct consequence of the favored formation of the reactive OMnIV(salen) state.


Journal of the American Chemical Society | 2008

Spectroscopic Definition of the Ferroxidase Site in M Ferritin: Comparison of Binuclear Substrate vs Cofactor Active Sites

Jennifer K. Schwartz; Xiaofeng S. Liu; Takehiko Tosha; Elizabeth C. Theil; Edward I. Solomon

Maxi ferritins, 24 subunit protein nanocages, are essential in humans, plants, bacteria, and other animals for the concentration and storage of iron as hydrated ferric oxide, while minimizing free radical generation or use by pathogens. Formation of the precursors to these ferric oxides is catalyzed at a nonheme biferrous substrate site, which has some parallels with the cofactor sites in other biferrous enzymes. A combination of circular dichroism (CD), magnetic circular dichroism (MCD), and variable-temperature, variable-field MCD (VTVH MCD) has been used to probe Fe(II) binding to the substrate active site in frog M ferritin. These data determined that the active site within each subunit consists of two inequivalent five-coordinate (5C) ferrous centers that are weakly antiferromagnetically coupled, consistent with a mu-1,3 carboxylate bridge. The active site ligand set is unusual and likely includes a terminal water bound to each Fe(II) center. The Fe(II) ions bind to the active sites in a concerted manner, and cooperativity among the sites in each subunit is observed, potentially providing a mechanism for the control of ferritin iron loading. Differences in geometric and electronic structure--including a weak ligand field, availability of two water ligands at the biferrous substrate site, and the single carboxylate bridge in ferritin--coincide with the divergent reaction pathways observed between this substrate site and the previously studied cofactor active sites.


Proceedings of the National Academy of Sciences of the United States of America | 2008

The ferritin Fe2 site at the diiron catalytic center controls the reaction with O2 in the rapid mineralization pathway

Takehiko Tosha; Mohammad R. Hasan; Elizabeth C. Theil

Oxidoreduction in ferritin protein nanocages occurs at sites that bind two Fe(II) substrate ions and O2, releasing Fe(III)2–O products, the biomineral precursors. Diferric peroxo intermediates form in ferritins and in the related diiron cofactor oxygenases. Cofactor iron is retained at diiron sites throughout catalysis, contrasting with ferritin. Four of the 6 active site residues are the same in ferritins and diiron oxygenases; ferritin-specific Gln137 and variable Asp/Ser/Ala140 substitute for Glu and His, respectively, in diiron cofactor active sites. To understand the selective functions of diiron substrate and diiron cofactor active site residues, we compared oxidoreductase activity in ferritin with diiron cofactor residues, Gln137 → Glu and Asp140 → His, to ferritin with natural diiron substrate site variations, Asp140, Ser140, or Ala140. In Gln137 → Glu ferritin, diferric peroxo intermediates were undetectable; an altered Fe(III)–O product formed, ΔA350 = 50% of wild type. In Asp140 → His ferritin, diferric peroxo intermediates were also undetectable, and Fe(II) oxidation rates decreased 40-fold. Ferritin with Asp140, Ser140, or Ala140 formed diferric peroxo intermediates with variable kinetic stabilities and rates: t1/2 varied 1- to 10-fold; kcat varied approximately 2- to 3-fold. Thus, relatively small differences in diiron protein catalytic sites determine whether, and for how long, diferric peroxo intermediates form, and whether the Fe–active site bonds persist throughout the reaction cycle (diiron cofactors) or break to release Fe(III)2–O products (diiron substrates). The results and the coding similarities for cofactor and substrate site residues—e.g., Glu/Gln and His/Asp pairs share 2 of 3 nucleotides—illustrate the potential simplicity of evolving active sites for diiron cofactors or diiron substrates.


Journal of Biological Chemistry | 2012

Ferritin Protein Nanocage Ion Channels GATING BY N-TERMINAL EXTENSIONS

Takehiko Tosha; Rabindra K. Behera; Ho-Leung Ng; Onita Bhattasali; Tom Alber; Elizabeth C. Theil

Background: Ferritins, cytoplasmic protein nanocages, with internal and cytoplasmic pores terminating trans-cage ion channels, reversibly concentrate iron and scavenge oxidants. Results: Changing ferritin conserved channel residues altered Fe2+ exit, channel flexibility, protein-crowding sensitivity, ion binding, and N-terminal folding. Conclusion: Eukaryotic ferritin N termini form cytoplasmic gates stabilized by hydrogen bonds and ionic bonds. Significance: Shared structure and function of ferritin with membrane ion channels includes cytoplasmic, N-terminal gates. Ferritin protein nanocages, self-assembled from four-α-helix bundle subunits, use Fe2+ and oxygen to synthesize encapsulated, ferric oxide minerals. Ferritin minerals are iron concentrates stored for cell growth. Ferritins are also antioxidants, scavenging Fenton chemistry reactants. Channels for iron entry and exit consist of helical hairpin segments surrounding the 3-fold symmetry axes of the ferritin nanocages. We now report structural differences caused by amino acid substitutions in the Fe2+ ion entry and exit channels and at the cytoplasmic pores, from high resolution (1.3–1.8 Å) protein crystal structures of the eukaryotic model ferritin, frog M. Mutations that eliminate conserved ionic or hydrophobic interactions between Arg-72 and Asp-122 and between Leu-110 and Leu-134 increase flexibility in the ion channels, cytoplasmic pores, and/or the N-terminal extensions of the helix bundles. Decreased ion binding in the channels and changes in ordered water are also observed. Protein structural changes coincide with increased Fe2+ exit from dissolved, ferric minerals inside ferritin protein cages; Fe2+ exit from ferritin cages depends on a complex, surface-limited process to reduce and dissolve the ferric mineral. High concentrations of bovine serum albumin or lysozyme (protein crowders) to mimic the cytoplasm restored Fe2+ exit in the variants to wild type. The data suggest that fluctuations in pore structure control gating. The newly identified role of the ferritin subunit N-terminal extensions in gating Fe2+ exit from the cytoplasmic pores strengthens the structural and functional analogies between ferritin ion channels in the water-soluble protein assembly and membrane protein ion channels gated by cytoplasmic N-terminal peptides.


Journal of Biological Chemistry | 2004

Crystal structure of the cytochrome p450cam mutant that exhibits the same spectral perturbations induced by putidaredoxin binding.

Shingo Nagano; Takehiko Tosha; Koichiro Ishimori; Isao Morishima; Thomas L. Poulos

The cytochrome P450cam active site is known to be perturbed by binding to its redox partner, putidaredoxin (Pdx). Pdx binding also enhances the camphor monooxygenation reaction (Nagano, S., Shimada, H., Tarumi, A., Hishiki, T., Kimata-Ariga, Y., Egawa, T., Suematsu, M., Park, S.-Y., Adachi, S., Shiro, Y., and Ishimura, Y. (2003) Biochemistry 42, 14507–14514). These effects are unique to Pdx because nonphysiological electron donors are unable to support camphor monooxygenation. The accompanying 1H NMR paper (Tosha, T., Yoshioka, S., Ishimori, K., and Morishima, I. (2004) J. Biol. Chem. 279, 42836–42843) shows that the conformation of active site residues, Thr-252 and Cys-357, and the substrate in the ferrous (Fe(II)) CO complex of the L358P mutant mimics that of the wild-type enzyme complexed to Pdx. To explore how these changes are transmitted from the Pdx-binding site to the active site, we have solved the crystal structures of the ferrous and ferrous-CO complex of wild-type and the L358P mutant. Comparison of these structures shows that the L358P mutation results in the movement of Arg-112, a residue known to be important for putidaredoxin binding, toward the heme. This change could optimize the Pdx-binding site leading to a higher affinity for Pdx. The mutation also pushes the heme toward the substrate and ligand binding pocket, which relocates the substrate to a position favorable for regio-selective hydroxylation. The camphor is held more firmly in place as indicated by a lower average temperature factor. Residues involved in the catalytically important proton shuttle system in the I helix are also altered by the mutation. Such conformational alterations and the enhanced reactivity of the mutant oxy complex with non-physiological electron donors suggest that Pdx binding optimizes the distal pocket for monooxygenation of camphor.


Journal of Biological Chemistry | 2011

Moving Iron through ferritin protein nanocages depends on residues throughout each four α-Helix bundle subunit. *

Suranjana Haldar; Loes E. Bevers; Takehiko Tosha; Elizabeth C. Theil

Eukaryotic H ferritins move iron through protein cages to form biologically required, iron mineral concentrates. The biominerals are synthesized during protein-based Fe2+/O2 oxidoreduction and formation of [Fe3+O]n multimers within the protein cage, en route to the cavity, at sites distributed over ∼50 Å. Recent NMR and Co2+-protein x-ray diffraction (XRD) studies identified the entire iron path and new metal-protein interactions: (i) lines of metal ions in 8 Fe2+ ion entry channels with three-way metal distribution points at channel exits and (ii) interior Fe3+O nucleation channels. To obtain functional information on the newly identified metal-protein interactions, we analyzed effects of amino acid substitution on formation of the earliest catalytic intermediate (diferric peroxo-A650 nm) and on mineral growth (Fe3+O-A350 nm), in A26S, V42G, D127A, E130A, and T149C. The results show that all of the residues influenced catalysis significantly (p < 0.01), with effects on four functions: (i) Fe2+ access/selectivity to the active sites (Glu130), (ii) distribution of Fe2+ to each of the three active sites near each ion channel (Asp127), (iii) product (diferric oxo) release into the Fe3+O nucleation channels (Ala26), and (iv) [Fe3+O]n transit through subunits (Val42, Thr149). Synthesis of ferritin biominerals depends on residues along the entire length of H subunits from Fe2+ substrate entry at 3-fold cage axes at one subunit end through active sites and nucleation channels, at the other subunit end, inside the cage at 4-fold cage axes. Ferritin subunit-subunit geometry contributes to mineral order and explains the physiological impact of ferritin H and L subunits.


Journal of Biological Chemistry | 2003

NMR study on the structural changes of cytochrome P450cam upon the complex formation with putidaredoxin: Functional significance of the putidaredoxin-induced structural changes

Takehiko Tosha; Shiro Yoshioka; Satoshi Takahashi; Koichiro Ishimori; Hideo Shimada; Isao Morishima

We investigated putidaredoxin-induced structural changes in carbonmonoxy P450cam by using NMR spectroscopy. The resonance from the β-proton of the axial cysteine was upfield shifted by 0.12 ppm upon the putidaredoxin binding, indicating that the axial cysteine approaches to the heme-iron by about 0.1 Å. The approach of the axial cysteine to the heme-iron would enhance the electronic donation from the axial thiolate to the heme-iron, resulting in the enhanced heterolysis of the dioxygen bond. In addition to the structural perturbation on the axial ligand, the structural changes in the substrate and ligand binding site were observed. The resonances from the 5-exo- and 9-methyl-protons of d-camphor, which were newly identified in this study, were upfield shifted by 1.28 and 0.20 ppm, respectively, implying that d-camphor moves to the heme-iron by 0.15–0.7 Å. Based on the radical rebound mechanism, the approach of d-camphor to the heme-iron could promote the oxygen transfer reaction. On the other hand, the downfield shift of the resonance from the γ-methyl group of Thr-252 reflects the movement of the side chain away from the heme-iron by ∼0.25 Å. Because Thr-252 regulates the heterolysis of the dioxygen bond, the positional rearrangement of Thr-252 might assist the scission of the dioxygen bond. We, therefore, conclude that putidaredoxin induces the specific heme environmental changes of P450cam, which would facilitate the oxygen activation and the oxygen transfer reaction.


Biochimica et Biophysica Acta | 2012

Molecular structure and function of bacterial nitric oxide reductase

Tomoya Hino; Shingo Nagano; Hiroshi Sugimoto; Takehiko Tosha; Yoshitsugu Shiro

The crystal structure of the membrane-integrated nitric oxide reductase cNOR from Pseudomonas aeruginosa was determined. The smaller NorC subunit of cNOR is comprised of 1 trans-membrane helix and a hydrophilic domain, where the heme c is located, while the larger NorB subunit consists of 12 trans-membrane helices, which contain heme b and the catalytically active binuclear center (heme b(3) and non-heme Fe(B)). The roles of the 5 well-conserved glutamates in NOR are discussed, based on the recently solved structure. Glu211 and Glu280 appear to play an important role in the catalytic reduction of NO at the binuclear center by functioning as a terminal proton donor, while Glu215 probably contributes to the electro-negative environment of the catalytic center. Glu135, a ligand for Ca(2+) sandwiched between two heme propionates from heme b and b(3), and the nearby Glu138 appears to function as a structural factor in maintaining a protein conformation that is suitable for electron-coupled proton transfer from the periplasmic region to the active site. On the basis of these observations, the possible molecular mechanism for the reduction of NO by cNOR is discussed. This article is part of a Special Issue entitled: Respiratory Oxidases.


Chemical Communications | 2006

Mononuclear copper(II)–hydroperoxo complex derived from reaction of copper(I) complex with dioxygen as a model of DβM and PHM

Tatsuya Fujii; Syuhei Yamaguchi; Yasuhiro Funahashi; Tomohiro Ozawa; Takehiko Tosha; Teizo Kitagawa; Hideki Masuda

A mononuclear copper(II)-hydroperoxo species has been generated by the reaction of Cu(I)-H2BPPA complex with dioxygen, which illustrates the enzymatic reaction process of the CuB site in the DbetaM and PHM.

Collaboration


Dive into the Takehiko Tosha's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elizabeth C. Theil

Children's Hospital Oakland Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge