Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takehiko Yokomizo is active.

Publication


Featured researches published by Takehiko Yokomizo.


Nature | 2003

Cloning of adiponectin receptors that mediate antidiabetic metabolic effects

Toshimasa Yamauchi; Junji Kamon; Yusuke Ito; Atsushi Tsuchida; Takehiko Yokomizo; Shunbun Kita; Takuya Sugiyama; Makoto Miyagishi; Kazuo Hara; Masaki Tsunoda; Koji Murakami; Toshiaki Ohteki; S. Uchida; Sato Takekawa; Hironori Waki; Nelson H. Tsuno; Yoichi Shibata; Yasuo Terauchi; Philippe Froguel; Kazuyuki Tobe; Shigeo Koyasu; Kazunari Taira; Toshio Kitamura; Takao Shimizu; Ryozo Nagai; Takashi Kadowaki

Corrigendum (2004)10.1038/nature03091Adiponectin (also known as 30-kDa adipocyte complement-related protein; Acrp30) is a hormone secreted by adipocytes that acts as an antidiabetic and anti-atherogenic adipokine. Levels of adiponectin in the blood are decreased under conditions of obesity, insulin resistance and type 2 diabetes. Administration of adiponectin causes glucose-lowering effects and ameliorates insulin resistance in mice. Conversely, adiponectin-deficient mice exhibit insulin resistance and diabetes. This insulin-sensitizing effect of adiponectin seems to be mediated by an increase in fatty-acid oxidation through activation of AMP kinase and PPAR-α. Here we report the cloning of complementary DNAs encoding adiponectin receptors 1 and 2 (AdipoR1 and AdipoR2) by expression cloning. AdipoR1 is abundantly expressed in skeletal muscle, whereas AdipoR2 is predominantly expressed in the liver. These two adiponectin receptors are predicted to contain seven transmembrane domains, but to be structurally and functionally distinct from G-protein-coupled receptors. Expression of AdipoR1/R2 or suppression of AdipoR1/R2 expression by small-interfering RNA supports our conclusion that they serve as receptors for globular and full-length adiponectin, and that they mediate increased AMP kinase and PPAR-α ligand activities, as well as fatty-acid oxidation and glucose uptake by adiponectin.


Nature | 1997

A G-protein-coupled receptor for leukotriene B4 that mediates chemotaxis

Takehiko Yokomizo; Takashi Izumi; Kyungho Chang; Yoh Takuwa; Takao Shimizu

Leukotriene B4(LTB4) is a potent chemoattractant that is primarily involved in inflammation, immune responses and host defence against infection. LTB4 activates inflammatory cells by binding to its cell-surface receptor (BLTR). LTB4 can also bind and activate the intranuclear transcription factor PPARα, resulting in the activation of genes that terminate inflammatory processes. Here we report the cloning of the complementary DNA encoding a cell-surface LTB4 receptor that is highly expressed in human leukocytes. Using a subtraction strategy, we isolated two cDNA clones (HL-1 and HL-5) from retinoic acid-differentiated HL-60 cells. These two clones contain identical open reading frames encoding a protein of 352 amino acids and predicted to contain seven membrane-spanning domains, but different 5′-untranslated regions. Membrane fractions of Cos-7 cells transfected with an expression construct containing the open reading frame of HL-5 showed specific LTB4 binding, with a Kd(0.154nM) comparable to that observed in retinoic acid-differentiated HL-60 cells. In CHO cells stably expressing this receptor, LTB4 induced increases in intracellular calcium, D-myo-inositol-1,4,5-triphosphate (InsP3) accumulation, and inhibition of adenylyl cyclase. Furthermore, CHO cells expressing exogenous BLTR showed marked chemotactic responses towards low concentrations of LTB4 in a pertussis-toxin-sensitive manner. Our findings, together with previous reports, show that LTB4 is a unique lipid mediator that interacts with both cell-surface and nuclear receptors.


Pharmacological Reviews | 2006

The Lipoxin Receptor ALX: Potent Ligand-Specific and Stereoselective Actions in Vivo

Nan Chiang; Charles N. Serhan; Sven-Erik Dahlén; Jeffrey M. Drazen; Douglas W. P. Hay; G. Enrico Rovati; Takao Shimizu; Takehiko Yokomizo; Charles Brink

Lipoxins (LXs) and aspirin-triggered LX (ATL) are trihydroxytetraene-containing eicosanoids generated from arachidonic acid that are distinct in structure, formation, and function from the many other proinflammatory lipid-derived mediators. These endogenous eicosanoids have now emerged as founding members of the first class of lipid/chemical mediators involved in the resolution of the inflammatory response. Lipoxin A4 (LXA4), ATL, and their metabolic stable analogs elicit cellular responses and regulate leukocyte trafficking in vivo by activating the specific receptor, ALX. ALX was the first receptor cloned and identified as a G protein-coupled receptor (GPCR) for lipoxygenase-derived eicosanoids with demonstrated cell type-specific signaling pathways. ALX at the level of DNA has sequence homology to the N-formylpeptide receptor and as an orphan GPCR was initially referred to as the N-formylpeptide receptor-like 1. Although LXA4 is the endogenous potent ligand for ALX activation, a number of peptides can also activate this receptor to stimulate calcium mobilization and chemotaxis in vitro. In contrast with LXA4, the counterparts of many of these peptides in vivo remain to be established. The purpose of this review is to highlight the molecular characterization of the ALX receptor and provide an overview of the ALX-LXA4 axis responsible for anti-inflammatory and proresolving signals in vivo. The information in this review provides further support for the initial nomenclature proposition for this GPCR as ALX.


Molecular and Cellular Biology | 2000

Inhibitory Regulation of Rac Activation, Membrane Ruffling, and Cell Migration by the G Protein-Coupled Sphingosine-1-Phosphate Receptor EDG5 but Not EDG1 or EDG3

Hiroyuki Okamoto; Noriko Takuwa; Takehiko Yokomizo; Naotoshi Sugimoto; Soutaro Sakurada; Hiroshi Shigematsu; Yoh Takuwa

ABSTRACT Sphingosine-1-phosphate (S1P) is a bioactive lysophospholipid that induces a variety of biological responses in diverse cell types. Many, if not all, of these responses are mediated by members of the EDG (endothelial differentiation gene) family G protein-coupled receptors EDG1, EDG3, and EDG5 (AGR16). Among prominent activities of S1P is the regulation of cell motility; S1P stimulates or inhibits cell motility depending on cell types. In the present study, we provide evidence for EDG subtype-specific, contrasting regulation of cell motility and cellular Rac activity. In CHO cells expressing EDG1 or EDG3 (EDG1 cells or EDG3 cells, respectively) S1P as well as insulin-like growth factor I (IGF I) induced chemotaxis and membrane ruffling in phosphoinositide (PI) 3-kinase- and Rac-dependent manners. Both S1P and IGF I induced a biphasic increase in the amount of the GTP-bound active form of Rac. In CHO cells expressing EDG5 (EDG5 cells), IGF I similarly stimulated cell migration; however, in contrast to what was found for EDG1 and EDG3 cells, S1P did not stimulate migration but totally abolished IGF I-directed chemotaxis and membrane ruffling, in a manner dependent on a concentration gradient of S1P. In EDG5 cells, S1P stimulated PI 3-kinase activity as it did in EDG1 cells but inhibited the basal Rac activity and totally abolished IGF I-induced Rac activation, which involved stimulation of Rac-GTPase-activating protein activity rather than inhibition of Rac-guanine nucleotide exchange activity. S1P induced comparable increases in the amounts of GTP-RhoA in EDG3 and EDG5 cells. Neither S1P nor IGF I increased the amount of GTP-bound Cdc42. However, expression of N17-Cdc42, but not N19-RhoA, suppressed S1P- and IGF I-directed chemotaxis, suggesting a requirement for basal Cdc42 activity for chemotaxis. Taken together, the present results demonstrate that EDG5 is the first example of a hitherto-unrecognized type of receptors that negatively regulate Rac activity, thereby inhibiting cell migration and membrane ruffling.


Pharmacological Reviews | 2003

International Union of Pharmacology XXXVII. Nomenclature for Leukotriene and Lipoxin Receptors

Charles Brink; Sven-Erik Dahlén; Jeffrey M. Drazen; Jilly F. Evans; Douglas W. P. Hay; Simonetta Nicosia; Charles N. Serhan; Takao Shimizu; Takehiko Yokomizo

The leukotrienes and lipoxins are biologically active metabolites derived from arachidonic acid. Their diverse and potent actions are associated with specific receptors. Recent molecular techniques have established the nucleotide and amino acid sequences and confirmed the evidence that suggested the existence of different G-protein-coupled receptors for these lipid mediators. The nomenclature for these receptors has now been established for the leukotrienes. BLT receptors are activated by leukotriene B4 and related hydroxyacids and this class of receptors can be subdivided into BLT1 and BLT2. The cysteinyl-leukotrienes (LT) activate another group called CysLT receptors, which are referred to as CysLT1 and CysLT2. A provisional nomenclature for the lipoxin receptor has also been proposed. LXA4 and LXB4 activate the ALX receptor and LXB4 may also activate another putative receptor. However this latter receptor has not been cloned. The aim of this review is to provide the molecular evidence as well as the properties and significance of the leukotriene and lipoxin receptors, which has lead to the present nomenclature.


Journal of Biological Chemistry | 2004

G2A Is a Proton-sensing G-protein-coupled Receptor Antagonized by Lysophosphatidylcholine

Naoka Murakami; Takehiko Yokomizo; Toshiaki Okuno; Takao Shimizu

G2A (from G2 accumulation) is a G-protein-coupled receptor (GPCR) that regulates the cell cycle, proliferation, oncogenesis, and immunity. G2A shares significant homology with three GPCRs including ovarian cancer GPCR (OGR1/GPR68), GPR4, and T cell death-associated gene 8 (TDAG8). Lysophosphatidylcholine (LPC) and sphingosylphosphorylcholine (SPC) were reported as ligands for G2A and GPR4 and for OGR1 (SPC only), and a glycosphingolipid psychosine was reported as ligand for TDAG8. As OGR1 and GPR4 were reported as proton-sensing GPCRs (Ludwig, M. G., Vanek, M., Guerini, D., Gasser, J. A., Jones, C. E., Junker, U., Hofstetter, H., Wolf, R. M., and Seuwen, K. (2003) Nature 425, 93–98), we evaluated the proton-sensing function of G2A. Transient expression of G2A caused significant activation of the zif 268 promoter and inositol phosphate (IP) accumulation at pH 7.6, and lowering extracellular pH augmented the activation only in G2A-expressing cells. LPC inhibited the pH-dependent activation of G2A in a dose-dependent manner in these assays. Thus, G2A is another proton-sensing GPCR, and LPC functions as an antagonist, not as an agonist, and regulates the proton-dependent activation of G2A.


Journal of Biological Chemistry | 2001

Hydroxyeicosanoids bind to and activate the low-affinity leukotriene B4 receptor, BLT2

Takehiko Yokomizo; Kazuhiko Kato; Hiroshi Hagiya; Takashi Izumi; Takao Shimizu

Leukotriene B4, an arachidonate metabolite, is a potent chemoattractant of leukocytes involved in various inflammatory diseases. Two G-protein-coupled receptors for leukotriene B4 have been cloned and characterized. BLT1 (Yokomizo, T., Izumi, T., Chang, K., Takuwa, Y., and Shimizu, T. (1997)Nature 387, 620–624) is a high affinity receptor exclusively expressed in leukocytes, and BLT2 (Yokomizo, T., Kato, K., Terawaki, K., Izumi, T., and Shimizu, T. (2000) J. Exp. Med. 192, 421–432) is a low affinity receptor expressed more ubiquitously. Here we report the binding profiles of various BLT antagonists and eicosanoids to either BLT1 or BLT2 using the membrane fractions of Chinese hamster ovary cells stably expressing the receptor. BLT antagonists are grouped into three classes: BLT1-specific U-75302, BLT2-specific LY255283, and BLT1/BLT2 dual-specific ZK 158252 and CP 195543. We also show that 12(S)-hydroxyeicosatetraenoic acid, 12(S)-hydroperxyeicosatetraenoic acid, and 15(S)-hydroxyeicosatetraenoic acid competed with [3H]LTB4 binding to BLT2, but not BLT1, dose dependently. These eicosanoids also cause calcium mobilization and chemotaxis through BLT2, again in contrast to BLT1. These findings suggest that BLT2 functions as a low affinity receptor, with broader ligand specificity for various eicosanoids, and mediates distinct biological and pathophysiological roles from BLT1.


Hypertension | 2002

Association of eNOS Glu298Asp Polymorphism With End-Stage Renal Disease

Eisei Noiri; Hiroaki Satoh; Junichi Taguchi; Sergey V. Brodsky; Akihide Nakao; Yumiko Ogawa; Satomi Nishijima; Takehiko Yokomizo; Katsushi Tokunaga; Toshiro Fujita

Abstract—Nitric oxide (NO) derived from endothelial cells is profoundly related to the maintenance of physiological vascular tone. Impairment of endothelial NO generation brought about by gene polymorphism is considered the major deterioration factor for progressive renal disease, including diabetic nephropathy. The present study aimed to elucidate the Glu298Asp polymorphism of endothelial NO synthase (eNOS) in patients with end-stage renal disease (ESRD) and its role as a predisposing factor for cardiovascular complications. Glu298Asp in exon 7 of the eNOS gene was determined by polymerase chain reaction, followed by restriction fragment length polymorphism analysis, in ESRD patients (n=185) and compared with that of unrelated healthy individuals (n=304). The occurrence of 298Asp was significantly higher in the ESRD group (P =0.0020; odds ratio [OR] 1.65; 95% confidential interval [CI]: 1.21 to 2.25). In this group, 72 patients had type 2 diabetes mellitus (DM). Although 298Asp did not reach a significant level in the non-DM ESRD subgroup, the occurrence of 298Asp was significantly higher in DM-derived ESRD patients (P =0.0010; OR 2.02; 95% CI: 1.37 to 3.07). The functional effect of the Glu298Asp was examined using Chinese hamster ovary (CHO) cells stably overexpressing either 1917G or 1917T. NO-selective electrode measurements and fluorometric nitrite assay revealed a statistically significant difference in NO production or nitrite accumulation between CHO 1917G and 1917T (P <0.01). These data indicated that Glu298Asp is the predisposing factor in ESRD, especially DM-derived ESRD. The functional difference in NO generation depending on eNOS with either glutamate or aspartate at position 298 was also confirmed in vitro.


Journal of Immunology | 2005

Absence of Leukotriene B4 Receptor 1 Confers Resistance to Airway Hyperresponsiveness and Th2-Type Immune Responses

Kan Terawaki; Takehiko Yokomizo; Takahide Nagase; Akiko Toda; Masahiko Taniguchi; Kohei Hashizume; Takeshi Yagi; Takao Shimizu

Bronchial asthma is an increasingly common disorder that remains poorly understood and difficult to manage. The disease is characterized by airway hyperresponsiveness, chronic inflammation, and mucus overproduction. Based on the finding that leukotriene B4 receptor 1 (BLT1) is expressed highly in Th2 lymphocytes, we analyzed the roles of BLT1 using an OVA-induced bronchial asthma model. BLT1-null mice did not develop airway hyperresponsiveness, eosinophilic inflammation, and hyperplasia of goblet cells. Attenuated symptoms were accompanied by reduced IgE production, and accumulation of IL-5 and IL-13 in bronchoalveolar lavage fluid, suggesting attenuated Th2-type immune response in BLT1-null mice. Peribronchial lymph node cells of sensitized BLT1-null mice showed much attenuated proliferation and production of Th2 cytokines upon re-stimulation with Ag in vitro. Thus, LTB4-BLT1 axis is required for the development of Th2-type immune response, and blockade of LTB4 functions through BLT1 would be novel and useful in the effort to ameliorate bronchial asthma and related Th2-biased immune disorders.


Journal of Experimental Medicine | 2008

12(S)-hydroxyheptadeca-5Z, 8E, 10E–trienoic acid is a natural ligand for leukotriene B4 receptor 2

Toshiaki Okuno; Yoshiko Iizuka; Hiroshi Okazaki; Takehiko Yokomizo; Ryo Taguchi; Takao Shimizu

Activated blood platelets and macrophages metabolize prostaglandin H2 into thromboxane A2 and 12(S)-hydroxyheptadeca-5Z, 8E, 10E–trienoic acid (12-HHT) in an equimolar ratio through the action of thromboxane synthase. Although it has been shown that 12-HHT is abundant in tissues and bodily fluids, this compound has long been viewed as a by-product lacking any specific function. We show that 12-HHT is a natural ligand for leukotriene B4 (LTB4) receptor-2 (BLT2), a G protein–coupled receptor that was originally identified as a low-affinity receptor for LTB4. BLT2 agonistic activity in lipid fractions from rat small intestine was identified as 12-HHT using high-performance liquid chromatography and mass spectrometry. Exogenously expressed BLT2 in mammalian cells was activated by synthetic 12-HHT, as assessed by guanosine 5′-O-(3-thio) triphosphate binding, the activation of intracellular signaling pathways, and chemotaxis assay. Displacement analysis using [3H]LTB4 showed that 12-HHT binds to BLT2 with a higher affinity than LTB4. Lipid extracts from cyclooxygenase 1–deficient mice failed to activate BLT2. Bone marrow–derived mast cells (BMMCs) isolated from wild-type mice migrated toward a low concentration of 12-HHT, whereas BMMCs from BLT2-deficient mice did not. We conclude that 12-HHT is a natural lipid agonist of BLT2 in vivo and induces chemotaxis of mast cells.

Collaboration


Dive into the Takehiko Yokomizo's collaboration.

Top Co-Authors

Avatar

Takao Shimizu

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge