Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takehito Inaba is active.

Publication


Featured researches published by Takehito Inaba.


Biochemical Journal | 2008

Protein trafficking to plastids: one theme, many variations

Takehito Inaba; Danny J. Schnell

Plastids are a diverse group of essential organelles in plants that include chloroplasts. The biogenesis and maintenance of these organelles relies on the import of thousands of nucleus-encoded proteins. The complexity of plastid structure has resulted in the evolution of at least four general import pathways that target proteins into and across the double membrane of the plastid envelope. Several of these pathways can be further divided into specialty pathways that mediate and regulate the import of specific classes of proteins. The co-ordination of import by these specialized pathways with changes in gene expression is critical for plastid and plant development. Moreover, protein import is acutely regulated in response to physiological and metabolic changes within the cell. In the present review we summarize the current knowledge of the mechanism of import via these pathways and highlight the regulatory mechanisms that integrate the plastid protein-trafficking pathways with the developmental and metabolic state of the plant.


Plant Physiology | 2007

Arabidopsis Cor15am Is a Chloroplast Stromal Protein That Has Cryoprotective Activity and Forms Oligomers

Katsuhiro Nakayama; Kumiko Okawa; Tomohiro Kakizaki; Takenori Honma; Hideaki Itoh; Takehito Inaba

Many plants acquire increased freezing tolerance when they are exposed to nonfreezing temperatures of a certain duration. This process is known as cold acclimation and allows plants to protect themselves from freezing injury. A wide variety of polypeptides are induced during cold acclimation, among which is one encoded by COR15A in Arabidopsis (Arabidopsis thaliana). Previous studies showed that the COR15A gene encodes a small, plastid-targeted polypeptide that is processed to a mature form called Cor15am. In this study, we examined the biochemical properties and activities of Cor15am in more detail. We provide evidence that Cor15am localizes almost exclusively to the chloroplast stroma. In addition, the cold-regulated accumulation of Cor15am is affected by chloroplast functionality. Both gel-filtration chromatography and protein cross-linking reveal that Cor15am forms oligomers in the stroma of chloroplasts. Although Cor15am accumulates in response to low temperature, cold acclimation is not a prerequisite for oligomerization of Cor15am. Structural analysis suggests that Cor15am is composed of both ordered and random structures, and can stay soluble with small structural change after boiling and freeze-thaw treatments. Recombinant Cor15am exhibits in vitro cryoprotection of a freeze-labile enzyme, l-lactate dehydrogenase. Furthermore, Cor15am is capable of associating with l-lactate dehydrogenase in vitro and with potential stromal substrates in vivo. On the basis of these results, we propose that Arabidopsis Cor15am is a cryoprotective protein that forms oligomers in the chloroplast stroma, and that direct association of Cor15am with its substrates is part of its cryoprotective mechanism.


Plant Physiology | 2009

Coordination of Plastid Protein Import and Nuclear Gene Expression by Plastid-to-Nucleus Retrograde Signaling

Tomohiro Kakizaki; Hideo Matsumura; Katsuhiro Nakayama; Fang-Sik Che; Ryohei Terauchi; Takehito Inaba

Expression of nuclear-encoded plastid proteins and import of those proteins into plastids are indispensable for plastid biogenesis. One possible cellular mechanism that coordinates these two essential processes is retrograde signaling from plastids to the nucleus. However, the molecular details of how this signaling occurs remain elusive. Using the plastid protein import2 mutant of Arabidopsis (Arabidopsis thaliana), which lacks the atToc159 protein import receptor, we demonstrate that the expression of photosynthesis-related nuclear genes is tightly coordinated with their import into plastids. Down-regulation of photosynthesis-related nuclear genes is also observed in mutants lacking other components of the plastid protein import apparatus. Genetic studies indicate that the coordination of plastid protein import and nuclear gene expression is independent of proposed plastid signaling pathways such as the accumulation of Mg-protoporphyrin IX and the activity of ABA INSENSITIVE4 (ABI4). Instead, it may involve GUN1 and the transcription factor AtGLK. The expression level of AtGLK1 is tightly correlated with the expression of photosynthesis-related nuclear genes in mutants defective in plastid protein import. Furthermore, the activity of GUN1 appears to down-regulate the expression of AtGLK1 when plastids are dysfunctional. Based on these data, we suggest that defects in plastid protein import generate a signal that represses photosynthesis-related nuclear genes through repression of AtGLK1 expression but not through activation of ABI4.


The Plant Cell | 2010

Gravitropism of Arabidopsis thaliana Roots Requires the Polarization of PIN2 toward the Root Tip in Meristematic Cortical Cells

Abidur Rahman; Maho Takahashi; Kyohei Shibasaki; Shuang Wu; Takehito Inaba; Seiji Tsurumi; Tobias I. Baskin

Gravitropism of roots depends on a flow of auxin from the root cap to the zone of elongation via the auxin efflux carrier PIN2. While PIN2 in epidermis and lateral root cap is positioned appropriately, PIN2 in the cortex has the opposite polarity. We report that, despite this, PIN2 functions in the root cortex for optimal gravitropism, apparently by limiting the auxin flow. In the root, the transport of auxin from the tip to the elongation zone, referred to here as shootward, governs gravitropic bending. Shootward polar auxin transport, and hence gravitropism, depends on the polar deployment of the PIN-FORMED auxin efflux carrier PIN2. In Arabidopsis thaliana, PIN2 has the expected shootward localization in epidermis and lateral root cap; however, this carrier is localized toward the root tip (rootward) in cortical cells of the meristem, a deployment whose function is enigmatic. We use pharmacological and genetic tools to cause a shootward relocation of PIN2 in meristematic cortical cells without detectably altering PIN2 polarization in other cell types or PIN1 polarization. This relocation of cortical PIN2 was negatively regulated by the membrane trafficking factor GNOM and by the regulatory A1 subunit of type 2-A protein phosphatase (PP2AA1) but did not require the PINOID protein kinase. When GNOM was inhibited, PINOID abundance increased and PP2AA1 was partially immobilized, indicating both proteins are subject to GNOM-dependent regulation. Shootward PIN2 specifically in the cortex was accompanied by enhanced shootward polar auxin transport and by diminished gravitropism. These results demonstrate that auxin flow in the root cortex is important for optimal gravitropic response.


Bioscience, Biotechnology, and Biochemistry | 2008

Evaluation of the Protective Activities of a Late Embryogenesis Abundant (LEA) Related Protein, Cor15am, during Various Stresses in Vitro

Katsuhiro Nakayama; Kumiko Okawa; Tomohiro Kakizaki; Takehito Inaba

Arabidopsis Cor15am is a late embryogenesis abundant (LEA) related protein that has been shown to exhibit cryoprotective activity in vitro. In this study, we further investigated the mechanisms by which Cor15am protects substrates from inactivation. Although Cor15am did not exhibit refolding activity, it showed protective activity against various stresses in vitro. This might be attributable to the activity of Cor15am in attenuating the aggregation of the substrates. Our data indicate that Cor15am functions as a protectant against various stresses by preventing protein aggregation.


Plant Cell and Environment | 2008

Identification and characterization of Cor413im proteins as novel components of the chloroplast inner envelope

Kumiko Okawa; Katsuhiro Nakayama; Tomohiro Kakizaki; Tetsuro Yamashita; Takehito Inaba

Plastids are surrounded by two membrane layers, the outer and inner envelope membranes, which have various transport and metabolic activities. A number of envelope membrane proteins have been identified by biochemical approaches and have been assigned to specific functions. Despite those efforts, the chloroplast envelope membrane is expected to contain a number of as yet unidentified proteins that may affect specific aspects of plant growth and development. In this report, we identify and characterize a novel class of inner envelope membrane proteins, designated as Cor413 chloroplast inner envelope membrane group (Cor413im). Both in vivo and in vitro studies indicate that Cor413im proteins are targeted to the chloroplast envelope. Biochemical analyses of Cor413im1 demonstrate that it is an integral membrane protein in the inner envelope of chloroplasts. Quantitative real-time PCR analysis reveals that COR413IM1 is more abundant than COR413IM2 in cold-acclimated Arabidopsis leaves. The analyses of T-DNA insertion mutants indicate that a single copy of COR413IM genes is sufficient to provide normal freezing tolerance to Arabidopsis. Based on these data, we propose that Cor413im proteins are novel components that are targeted to the chloroplast inner envelope in response to low temperature.


Plant and Cell Physiology | 2010

Versatile Roles of Plastids in Plant Growth and Development

Takehito Inaba; Yasuko Ito-Inaba

Plastids, found in plants and some parasites, are of endosymbiotic origin. The best-characterized plastid is the plant cell chloroplast. Plastids provide essential metabolic and signaling functions, such as the photosynthetic process in chloroplasts. However, the role of plastids is not limited to production of metabolites. Plastids affect numerous aspects of plant growth and development through biogenesis, varying functional states and metabolic activities. Examples include, but are not limited to, embryogenesis, leaf development, gravitropism, temperature response and plant-microbe interactions. In this review, we summarize the versatile roles of plastids in plant growth and development.


Bioscience, Biotechnology, and Biochemistry | 2010

Bilateral communication between plastid and the nucleus: plastid protein import and plastid-to-nucleus retrograde signaling.

Takehito Inaba

Plastids are a diverse group of organelles found in plants and some parasites. Chloroplasts are the archetypical plastids and are present in photosynthetic plant cells. Because most plastid proteins are encoded by the nuclear genome, plastid biogenesis relies on importing these proteins into the plastid. On the other hand, changes in functional or metabolic states of plastids have been known to affect the expression of nuclear genes encoding plastid proteins, and are collectively called “plastid signals.” This regulation is also important for maintaining plastid function. This review focuses on the roles of these anterograde and retrograde pathways in plastid biogenesis and environmental adaptation.


International Review of Cell and Molecular Biology | 2011

Retrograde Signaling Pathway from Plastid to Nucleus

Takehito Inaba; Fumiko Yazu; Yasuko Ito-Inaba; Tomohiro Kakizaki; Katsuhiro Nakayama

Plastids are a diverse group of organelles found in plants and some parasites. Because genes encoding plastid proteins are divided between the nuclear and plastid genomes, coordinated expression of genes in two separate genomes is indispensable for plastid function. To coordinate nuclear gene expression with the functional or metabolic state of plastids, plant cells have acquired a retrograde signaling pathway from plastid to nucleus, also known as the plastid signaling pathway. To date, several metabolic processes within plastids have been shown to affect the expression of nuclear genes. Recent progress in this field has also revealed that the plastid signaling pathway interacts and shares common components with other intracellular signaling pathways. This review summarizes our current knowledge on retrograde signaling from plastid to nucleus in plant cells and its role in plant growth and development.


Frontiers in Plant Science | 2016

Specific and Efficient Targeting of Cyanobacterial Bicarbonate Transporters to the Inner Envelope Membrane of Chloroplasts in Arabidopsis

Susumu Uehara; Fumi Adachi; Yasuko Ito-Inaba; Takehito Inaba

Installation of cyanobacterial bicarbonate transporters to the inner envelope membrane (IEM) of chloroplasts in C3 plants has been thought to improve photosynthetic performance. However, the method to deliver cyanobacterial bicarbonate transporters to the chloroplast IEM remains to be established. In this study, we provide evidence that the cyanobacterial bicarbonate transporters, BicA and SbtA, can be specifically installed into the chloroplast IEM using the chloroplast IEM targeting signal in conjunction with the transit peptide. We fused the transit peptide and the mature portion of Cor413im1, whose targeting mechanism to the IEM has been characterized in detail, to either BicA or SbtA isolated from Synechocystis sp. PCC6803. Among the seven chimeric constructs tested, we confirmed that four chimeric bicarbonate transporters, designated as BicAI, BicAII, SbtAII, and SbtAIII, were expressed in Arabidopsis. Furthermore, these chimeric transporters were specifically targeted to the chloroplast IEM. They were also resistant to alkaline extraction but can be solubilized by Triton X-100, indicating that they are integral membrane proteins in the chloroplast IEM. One of the transporters, BicA, could reside in the chloroplast IEM even after removal of the IEM targeting signal. Taken together, our results indicate that the addition of IEM targeting signal, as well as the transit peptide, to bicarbonate transporters allows us to efficiently target nuclear-encoded chimeric bicarbonate transporters to the chloroplast IEM.

Collaboration


Dive into the Takehito Inaba's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fumi Adachi

University of Miyazaki

View shared research outputs
Top Co-Authors

Avatar

Fumiko Yazu

University of Miyazaki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yamato Hida

University of Yamanashi

View shared research outputs
Researchain Logo
Decentralizing Knowledge