Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takemi Kikutani is active.

Publication


Featured researches published by Takemi Kikutani.


Journal of Biomedical Materials Research | 1998

Bioactive bone cement: Comparison of apatite and wollastonite containing glass-ceramic, hydroxyapatite, and ?-tricalcium phosphate fillers on bone-bonding strength

Masahiko Kobayashi; Takashi Nakamura; Yoshifumi Okada; Akira Fukumoto; Taizo Furukawa; Hirofumi Kato; Tadashi Kokubo; Takemi Kikutani

A study was conducted to compare the bone-bonding strengths of three types of bioactive bone cement, consisting of either apatite- and wollastonite-containing glass-ceramic (AW-GC) powder, hydroxyapatite (HA) powder, or beta-tricalcium phosphate (beta-TCP) powder as an inorganic filler and bisphenol-a-glycidyl methacrylate (Bis-GMA) based resin as an organic matrix. Seventy percent (w/w) filler was added to the cement. Rectangular plates (10 x 15 x 2 mm) of each cement were made and abraded with #2000 alumina powder. After soaking in simulated body fluid for 2 days, the AW cement (AWC) and HA cement (HAC) formed bonelike apatite over their entire surfaces, but the TCP cement (TCPC) did not. Plates of each type of cement were implanted into the tibial metaphyses of male Japanese white rabbits, and the failure loads were measured by a detaching test at 10 and 25 weeks after implantation. The failure loads of AWC, HAC, and TCPC were 3.95, 2.04, and 2.03 kgf at 10 weeks and 4.36, 3.45, and 3.10 kgf at 25 weeks, respectively. The failure loads of the AWC were significantly higher than those of the HAC and TCPC at 10 and 25 weeks. Histological examination by contact microradiogram and Giemsa surface staining of the bone-cement interface revealed that all the bioactive bone cements were in direct contact with bone. However, scanning electron microscopy and energy-dispersive X-ray microanalysis showed that only AWC had contacted to the bone via a Ca-P rich layer formed at the interface between the AW-GC powder and the bone, which might explain its high bone-bonding strength. Neither the HAC nor the TCPC contacted the bone through such a layer between each powder and the bone, although the HAC and TCPC directly contacted with bone. Our results indicate that all three types of abraded and prefabricated cement have bonding strength to bone, but AWC has superior bone-bonding strength compared to HAC and TCPC.


Journal of Biomedical Materials Research | 1997

Mechanical and biological properties of bioactive bone cement containing silica glass powder

Masahiko Kobayashi; Takashi Nakamura; Jiro Tamura; Hirokazu Iida; Hiroshi Fujita; Tadashi Kokubo; Takemi Kikutani

Silica glass powder (SG-P) made by a fusing-quenching method was added as a second filler to a bioactive bone cement consisting of MgO-CaO-SiO2-P2O5-CaF2 apatite and wollastonite containing glass-ceramic powder (AW-P) and bisphenol-a-glycidyl methacrylate (Bis-GMA)-based resin, to achieve a higher mechanical strength and better handling properties in use. Five types of cement were used, containing different weight ratios of AW-P/SG-P (Group 1 = 100/0; Group 2 = 75/25; Group 3 = 50/50; Group 4 = 25/75; and Group 5 = 0/100) as filler, to evaluate the effect of SG-P content on the biological, mechanical, and handling properties. The total proportion of filler added to the cements was 85% w/w. The compressive, bending, and tensile strengths and fracture toughness of the cements increased with SG-P content. The viscosity of cements also increased with SG-P content, and every cement could be handled manually. The cements were evaluated in vivo by packing the intramedullary canals of rat tibiae. An affinity index was calculated for each cement; this was the length of bone directly apposed to cement expressed as a percentage of the total length of the cement surface. Histological examination of implanted tibiae for up to 26 weeks showed that the affinity indices decreased with SG-P content and that those of all the cement groups increased with time. At 26 weeks, Groups 1 and 2 had almost identical affnity indices (79% and 75%; no significant difference) but those of the other groups remained at <50%. Group 2 had better mechanical and handling properties than Group 1, and an SG-P content in the filler of no more than 25% w/w did not interfere strongly with the bioactivity of the cement.


Journal of Biomedical Materials Research | 1999

Effect of bioactive filler content on mechanical properties and osteoconductivity of bioactive bone cement

Masahiko Kobayashi; Takashi Nakamura; Shuichi Shinzato; Weam Farid Mousa; Ken Nishio; Kunitaka Ohsawa; Tadashi Kokubo; Takemi Kikutani

We took three types of bioactive bone cement (designated AWC, HAC, and TCPC), each with a different bioactive filler, and evaluated the influence of each filler on the mechanical properties and osteoconductivity of the cement. The cements consisted of bisphenol-a-glycidyl methacrylate-based (Bis-GMA based) monomers as an organic matrix, with a bioactive filler of apatite/wollastonite containing glass-ceramic (AW-GC) or sintered hydroxyapatite (HA) or beta-tricalcium phosphate (beta-TCP) powder. Each filler was mixed with the monomers in proportions of 50, 70, and 80% (w/w), giving a total of nine cement subgroups. The nine subgroups were designated AWC50, AWC70, AWC80, HAC50, HAC70, HAC80, TCPC50, TCPC70, and TCPC80. The compressive and bending strengths of AWC were found to be higher than those of HAC and TCPC for all bioactive filler contents. We also evaluated the cements in vivo by packing them into the intramedullary canals of rat tibiae. To compare the osteoconductivity of the cements, an affinity index was calculated for each cement; it equaled the length of bone in direct apposition to the cement, expressed as a percentage of the total length of the cement surface. Microradiographic examination up to 26 weeks after implantation revealed that AWC showed a higher affinity index than HAC and TCPC for each filler content although the affinity indices of all nine subgroups (especially the AWC and HAC subgroups) increased with time. New bone had formed along the AWC surface within 4 weeks, even in the cement containing AW-GC filler at only 50% (w/w); observation of the cement-bone interfaces using a scanning electron microscope showed that all the cements had directly contacted the bone. At 4 weeks the AWC had bonded to the bone via a 10 micron-thick reactive layer; the width of the layer, in which partly degraded AW-GC particles were seen, became slightly thicker with time. On the other hand, in the HAC- and TCPC-implanted tibiae, some particles on the cement surface were surrounded by new bone and partly absorbed or degraded. The results suggest that the stronger bonding between the inorganic filler and the organic matrix in the AWC cements gave them better mechanical properties. The results also indicate that the higher osteoconductivity of AWC was caused by the higher reactivity of the AW-GC powder on the cement surface.


Journal of Biomedical Materials Research | 2000

Alumina powder/bis-GMA composite : Effect of filler content on mechanical properties and osteoconductivity

Masahiko Kobayashi; Shuichi Shinzato; Keiichi Kawanabe; Masashi Neo; Mutsumi Matsushita; Tadashi Kokubo; Takemi Kikutani; Takashi Nakamura

Three composites consisting of alumina powder dispersed in a bisphenol-a-glycidyl methacrylate (Bis-GMA) matrix were prepared and evaluated to assess the effect of alumina powder content on the mechanical properties and osteoconductivity of the composite. The alumina powder composites (APC) consisted of alumina powder (AL-P) as the inorganic filler dispersed in a Bis-GMA matrix that was solidified by a radical polymerization process. Prior to polymerization the AL-P was mixed with the monomers in proportions of 50%, 70%, and 80% by weight (APC50, APC70, and APC80). A fused silica-glass-filled composite containing 70% glass by weight (SGC70) was used as a control. The compressive and bending strengths, the elastic modulus in bending, and the bending strain of the composites increased as the AL-P content increased. We also evaluated the composites in vivo by implanting them into the medullary canals of rat tibiae. To compare the osteoconductivity of the composites, an affinity index was calculated for each composite; the affinity index equals the length of a bone in direct apposition to the composite and is expressed as a percentage of the total length of the composite surface. Microradiographic examination for periods of up to 26 weeks after implantation revealed that APC50, APC70, and APC80 all exhibited excellent osteoconductivity and made direct contact with the bone with no interposed soft tissues. However, the higher the AL-P content of the composite, the higher the osteoconductivity, especially at 4 weeks after the operation. Moreover, the amount of bone directly apposed to the composite surface increased with time. In contrast, little bone formation was seen on the surface of SGC70, even after 26 weeks. Observation by scanning electron microscope-energy dispersive X-ray microanalysis demonstrated that bone made direct contact with the APC surface through a layer containing calcium, phosphorus, and alumina powder. These results suggest that APC shows promise as a basis for developing mechanically strong and highly osteoconductive composites.


Journal of Biomedical Materials Research | 1999

Osteoconductivity and bone-bonding strength of high- and low-viscous bioactive bone cements †

Masahiko Kobayashi; Takashi Nakamura; Jiro Tamura; Takemi Kikutani; Shigeru Nishiguchi; Weam Farid Mousa; Makoto Takahashi; Tadashi Kokubo

A study was conducted to evaluate the osteoconductivity and bone-bonding ability of two types of bioactive bone cement, both consisting of apatite and wollastonite containing glass-ceramic powder (AW-P), fused silica glass powder (SG-P), submicron fumed silica as an inorganic filler, and bisphenol-a-glycidyl methacrylate (Bis-GMA) based resin as an organic matrix. The cements had two kinds of formulas: one (dough-type cement; designated DTC) composed of 85% (w/w) filler and 15% resin, which was developed for fixation of the acetabular component in total hip arthroplasty and could be handled manually; and one (injection-type cement; designated ITC) composed of 79% (w/w) filler and 21% resin. ITC was developed for fixation of the femoral component and, because it had a lower viscosity than DTC, could be injected. The DTC and ITC both contained 73% AW-P, 25% SG-P, and 2% fumed silica in the weight ratio of the filler component. Two other types of cement, both of which consisted of 83.3% AW-P or SG-P, 1.7% fumed silica, and 15% resin, were used as reference material (designated AWC or SGC) for a detaching test. Following the packing of bone defects in the rat tibiae with either DTC or ITC, histological examination revealed that the DTC and ITC had both directly contacted the bone and were almost completely surrounded by bone by 16 weeks after the surgery and that no marked biodegradation had occurred at 52 weeks postimplantation. Rectangular plates (2 x 10 x 15 mm) of AWC, DTC, ITC, and SGC were implanted into the metaphysis of the tibia of male rabbits and the failure load was measured by a detaching test at 10 and 25 weeks after implantation. The failure loads of AWC, DTC, ITC, and SGC were 3.65, 2.21, 2.44, and 0.04 kgf at 10 weeks and 4.87, 2. 81, 2.82, and 0.13 kgf at 25 weeks, respectively. Observation of the bone-implant interface by scanning electron microscopy and energy dispersive X-ray microanalysis revealed that all the samples except SGC formed direct contact with the bone and that only AWC-implanted tibiae had a layer of a low calcium and phosphorus level at the bone-implant interface. Results showed that DTC and ITC have excellent osteoconductivity and bone-bonding ability under non-weight-bearing conditions.


Journal of Biomedical Materials Research | 1998

Effect of polymerization reaction inhibitor on mechanical properties and surface reactivity of bioactive bone cement

Masahiko Kobayashi; Takashi Nakamura; Takemi Kikutani; Keiichi Kawanabe; Tadashi Kokubo

We introduced an inhibitor to the polymerization reaction of bioactive bone cement (AWC) consisting of MgO-CaO-SiO2-P2O5-CaF2 apatite and wollastonite containing glass-ceramic powder and bisphenol-alpha-glycidyl methacrylate based resin, together with an increased amount of accelerator but without any prolongation of its setting time in order to improve the degree of polymerization and decrease the amount of incompletely polymerized monomers on the cement surface. A comparison was made between the AWC containing the inhibitor [AWC(I+)] and the AWC without it [AWC(I-)] with regard to setting parameters, mechanical properties, and surface reactivity in vitro and in vivo. The proportion of glass-ceramic powder added to the AWC was 70% (w/w). The total amount of heat generation and the peak temperature of the AWC(I+) during polymerization were slightly greater than those of the AWC(I-). The mechanical strength of AWC(I+) was higher than that of the AWC(I-) under wet conditions. In simulated body fluid, the width of the Ca-P rich layer on the surface of the AWC(I+) was less than that on the AWC(I-) after 28 days of immersion, although the rate of apatite formation on the top surface of the AWC(I+) was almost identical to that on the AWC(I-) surface. Histological examination using rat tibiae up to 26 weeks revealed that the bioactivity of the AWC(I+) was equivalent to that of the AWC(I-). Scanning electron microscopy and energy-dispersive X-ray microanalysis demonstrated that the Ca-P rich layer in the AWC(I+) was significantly narrower than that in the AWC(I-) at the same time points. These results indicate that introduction of the inhibitor improved the mechanical properties of the AWC and made the Ca-P rich layer narrower, but it had no adverse effect on bioactivity.


Journal of Biomedical Materials Research | 1997

Bioactive bone cement: Comparison of AW-GC filler with hydroxyapatite and β-TCP fillers on mechanical and biological properties

Masahiko Kobayashi; Takashi Nakamura; Jiro Tamura; Tadashi Kokubo; Takemi Kikutani


Archive | 2007

PHOSPHOR COMPOSITE MATERIAL AND PHOSPHOR COMPOSITE MEMBER

Shunsuke Fujita; Yoshio Umayahara; Masaru Iwao; Takemi Kikutani


Archive | 1999

Tin-borophosphate glass and sealing material

Takemi Kikutani


Archive | 2012

ILLUMINATING DEVICE AND PHOSPHOR COMPOSITE MATERIAL

Shunsuke Fujita; Yoshio Umayahara; Masaru Iwao; Takemi Kikutani

Collaboration


Dive into the Takemi Kikutani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge