Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takeo Tatsuta is active.

Publication


Featured researches published by Takeo Tatsuta.


International Journal of Oncology | 2013

Sialic acid-binding lectin (leczyme) induces caspase-dependent apoptosis-mediated mitochondrial perturbation in Jurkat cells.

Takeo Tatsuta; Masahiro Hosono; Shigeki Sugawara; Yukiko Kariya; Yukiko Ogawa; Sen-itiroh Hakomori; Kazuo Nitta

Sialic acid binding lectin (SBL) isolated from Rana catesbeiana oocytes is a multifunctional protein which has lectin activity, ribonuclease activity and antitumor activity. However, the mechanism of antitumor effects of SBL is unclear to date and the validity for human leukemia cells has not been fully studied. We report here that SBL shows cytotoxicity for some human leukemia cell lines including multidrug-resistant (MDR) cells. The precise mechanisms of SBL-induced apoptotic signals were analyzed by combinational usage of specific caspase inhibitors and the mitochondrial membrane depolarization detector JC-1. It was demonstrated that SBL causes mitochondrial perturbation and the apoptotic signal is amplified by caspases and cell death is executed in a caspase-dependent manner. The efficacy of this combinational usage was shown for the first time, to distinguish the apoptotic pathway in detail. SBL selectively kills tumor cells, is able to exhibit cytotoxicity regardless of P-glycoprotein expression and has potential as an alternative to conventional DNA-damaging anticancer drugs.


Biochimica et Biophysica Acta | 2009

Binding of Silurus asotus lectin to Gb3 on Raji cells causes disappearance of membrane-bound form of HSP70.

Shigeki Sugawara; Tasuku Kawano; Takashi Omoto; Masahiro Hosono; Takeo Tatsuta; Kazuo Nitta

Heat shock proteins (HSPs) are divided into stress-inducible and constitutive types. Generally, HSP70 (stress inducible) and HSC70 (constitutive) are representative of their types, respectively. From the results of immunocytochemical analysis, both HSP70 and HSC70 were constitutively expressed in globotriaosylceramide (Gb3)-expressing Raji cells as well as Gb3-negative K562 cells. Furthermore, the membrane-bound form of HSP70 was present on the surfaces of two cell lines as patch and cap-like structures, and was recovered in the cholesterol rich microdomains (CRM) prepared from them. On the other hand, HSP70 was partially co-localized with Gb3 on the surface of Raji cells. This result suggested that HSP70 was not associated with all of Gb3 molecules but with Gb3 specifically located in the particular environment. The effect of Silurus asotus lectin (SAL), which is one of the rhamnose-binding lectins and specifically binds to Gb3, on the disappearance of membrane-bound HSP70 was dependent on whether Gb3 was present or not. These results suggested that the disappearance of membrane-bound HSP70 was caused by SAL binding to Gb3, that the reduction of membrane-bound HSP70 might result in the decrease in cell volume observed, and that the mechanism of SAL-induced HSP70 expression may differ from that of heat shock in Raji cells.


International Journal of Oncology | 2014

Sialic acid-binding lectin (leczyme) induces apoptosis to malignant mesothelioma and exerts synergistic antitumor effects with TRAIL

Takeo Tatsuta; Masahiro Hosono; Kohta Takahashi; Takashi Omoto; Yukiko Kariya; Shigeki Sugawara; Sen-itiroh Hakomori; Kazuo Nitta

Malignant mesothelioma is a highly aggressive tumor with poor prognosis. An effective drug for treatment of malignant mesothelioma is greatly needed. Sialic acid-binding lectin (SBL) isolated from oocytes of Rana catesbeiana is a multifunctional protein which has lectin activity, ribonuclease activity and antitumor activity, so it could be developed as a new type of anticancer drug. The validity of SBL for treatment of malignant mesothelioma was assessed using three malignant mesotheliomas and a non-malignant mesothlial cell line. Effectiveness of combinatorial treatment of SBL and tumor necrosis factor-related apoptosis inducing ligand (TRAIL) was also elucidated and characterized. SBL induced tumor-selective cytotoxicity that was attributed to induction of apoptosis. Combinatorial treatment of SBL and TRAIL showed synergistic apoptosis-inducing effect. Additional experiments revealed that Bid was the mediating molecule for the synergistic effect in SBL and TRAIL. These results suggested that SBL could be a promising candidate for the therapeutics for malignant mesothelioma. Furthermore, the combinatorial treatment of SBL and TRAIL could be an effective regimen against malignant mesothelioma.


Oncology Reports | 2014

Downregulation of Hsp70 inhibits apoptosis induced by sialic acid-binding lectin (leczyme)

Takeo Tatsuta; Masahiro Hosono; Yukiko Ogawa; Kyoko Inage; Shigeki Sugawara; Kazuo Nitta

Heat shock proteins (Hsps) are molecular chaperones that maintain homeostasis of organisms. In regards to the Hsps, many studies have investigated the structure, expression, localization and functions of Hsp70 and Hsc70 including expression in the glycosphingolipid-enriched microdomain (GEM) on the cell surface and involvement in cell death. Sialic acid-binding lectin (SBL) isolated from oocytes of Rana catesbeiana is a multifunctional protein which has lectin activity, ribonuclease activity and antitumor activity. SBL has potential as a new type of anticancer drug, since it causes cancer-selective induction of apoptosis by multiple signaling pathways in which RNA is its target; and the participation of the mitochondrial pathway and the endoplasmic reticulum (ER) stress-mediated pathway has been suggested. It has also been suggested that receptor(s) for SBL (SBLR) may exist in the GEM on the cell surface. In the present study, we studied the possible involvement of Hsp70 and Hsc70 in SBL-induced apoptosis. We showed that Hsp70 and Hsc70 were expressed on the P388 cell surface similar to SBLR, and their distribution in cells dramatically changed immediately prior to the execution of apoptosis following stimulation of SBL. Functional study of Hsp70 revealed that decreased expression of Hsp70 diminished the apoptosis induced by SBL. It is suggested that Hsp70 participates in the antitumor effect of SBL.


International Journal of Oncology | 2013

Involvement of ER stress in apoptosis induced by sialic acid-binding lectin (leczyme) from bullfrog eggs

Takeo Tatsuta; Masahiro Hosono; Yuki Miura; Shigeki Sugawara; Yukiko Kariya; Sen-itiroh Hakomori; Kazuo Nitta

Sialic-acid binding lectin (SBL) isolated from bullfrog (Rana catesbeiana) oocytes is a multifunctional protein which has lectin activity, ribonuclease activity and cancer-selective antitumor activity. It has been reported that SBL induces apoptosis accompanied by rigid mitochondrial perturbation, which indicates mediation of the intrinsic pathway. However, the mechanism of the antitumor effect of SBL has not been fully elucidated. We report, here, that ER stress is evoked in SBL-treated cells. We show that caspase-4, an initiator caspase of ER stress-mediated apoptosis was activated, and inhibition of caspase-4 resulted in significant attenuation of apoptosis induced by SBL. We analyzed the precise mechanism of activation of the caspase cascade induced by SBL, and found that caspase-9 and -4 are activated upstream of activation of caspase-8. Further study revealed that SBL induces the mitochondrial and ER stress-mediated pathways independently. It is noteworthy that SBL can induce cancer-selective apoptosis by multiple apoptotic signaling pathways, and it can serve as a candidate molecule for anticancer drugs in a novel field.


Frontiers in Oncology | 2014

Cancer-Selective Induction of Apoptosis by Leczyme

Takeo Tatsuta; Shigeki Sugawara; Kohta Takahashi; Yukiko Ogawa; Masahiro Hosono; Kazuo Nitta

Sialic acid-binding lectin (SBL) is a multi-functional protein that is isolated from oocytes of Rana catesbeiana. It has both lectin and ribonuclease (enzyme) properties, and therefore is called leczyme. We examined the anti-tumor effects of SBL and discovered that SBL has potential as a new type of anti-cancer drug. SBL causes a cancer-selective induction of apoptosis by multiple signaling pathways whereby RNA is its target. It is suggested that the mitochondrial pathway and endoplasmic reticulum stress-mediated pathway participate in SBL-induced signaling. The synergistic anti-tumor effects with other molecules, such as tumor necrosis factor-related apoptosis ligand and interferon γ, have been reported. In this study, we summarize the effects of SBL and focus on its cancer-selective apoptotic properties. In addition, we present a possible explanation for its cancer specificity.


BioMed Research International | 2014

Leczyme: a new candidate drug for cancer therapy.

Takeo Tatsuta; Shigeki Sugawara; Kohta Takahashi; Yukiko Ogawa; Masahiro Hosono; Kazuo Nitta

Sialic acid-binding lectin (SBL), isolated from oocytes of Rana catesbeiana, is leczyme and has both lectin and ribonuclease (RNase) activities. A remarkable antitumor effect of SBL has also been reported. SBL agglutinates various kinds of tumor cells but not normal cells. SBL agglutination activity is not affected by mono- or oligosaccharides. However, SBL-induced agglutination and antitumor effects are inhibited by sialomucin but not asialomucin. In addition, SBL has very little effect on sialidase-treated cells. SBL causes cancer-selective induction of apoptosis by multiple signaling pathways, which target RNA. Synergistic antitumor effects with other molecules, such as tumor necrosis factor-related apoptosis ligand (TRAIL) and interferon-γ (IFN-γ), have been reported. Thus, SBL may be a novel candidate molecule for anticancer drug development. Sialoglycoconjugates on the tumor cell surface may be associated with lectin activity and antitumor effects of SBL. We review the properties of SBL, particularly its lectin, RNase, and antitumor activities, and comprehensively examine the potential application of SBL for clinical purposes.


Journal of Natural Products | 2017

Lissoclibadin 1, a Polysulfur Aromatic Alkaloid from the Indonesian Ascidian Lissoclinum cf. badium, Induces Caspase-Dependent Apoptosis in Human Colon Cancer Cells and Suppresses Tumor Growth in Nude Mice

Takeo Tatsuta; Masahiro Hosono; Henki Rotinsulu; Defny S. Wewengkang; Deiske A. Sumilat; Michio Namikoshi; Hiroyuki Yamazaki

Lissoclibadins, polysulfur aromatic alkaloids, were isolated from the Indonesian ascidian Lissoclinum cf. badium. Lissoclibadins 1 (1), 3 (2), 4 (3), 7 (4), 8 (5), and 14 (6) inhibited the growth of four human solid cancer cell lines: HCT-15 (colon adenocarcinoma), HeLa-S3 (cervix adenocarcinoma), MCF-7 (breast adenocarcinoma), and NCI-H28 (mesothelioma). Lissoclibadin 1 (1) exerted the most potent cytotoxic effects in vitro and mainly promoted apoptosis through an intrinsic pathway with the activation of a caspase-dependent pathway in HCT-15 cells. In vivo studies demonstrated that 1 suppressed tumor growth in nude mice carrying HCT-15 cells without significant secondary adverse effects. In conclusion, the results obtained in the present study demonstrate that 1 has potential as a chemotherapeutic candidate for preclinical investigations.


Oncotarget | 2017

Synergistic anti-tumor effect of bullfrog sialic acid-binding lectin and pemetrexed in malignant mesothelioma

Toshiyuki Satoh; Takeo Tatsuta; Shigeki Sugawara; Akiyoshi Hara; Masahiro Hosono

Malignant mesothelioma is an aggressive cancer with limited therapeutic options. Sialic acid-binding lectin isolated from Rana catesbeiana oocytes (cSBL) is a multifunctional protein with anti-cancer activity. The effects of pemetrexed, cisplatin, and cSBL were evaluated in mesothelioma and normal mesothelial cell lines. We evaluated cytotoxicity, apoptosis, caspase-3 cleavage and activation, cell proliferation, cell cycle arrest, and levels of cell cycle proteins in H28 cells treated with pemetrexed, cisplatin, and cSBL alone or in combination. Treatment with cSBL alone was cytotoxic to mesothelioma cells. The anti-cancer effect of cSBL was observed in a broader range of cell lines and exhibited greater cancer cell selectivity than pemetrexed or cisplatin. Combination treatment with pemetrexed + cSBL resulted in greater dose-dependent cytotoxicity than pemetrexed + cisplatin, the standard of care in mesothelioma. The synergistic effect of pemetrexed + cSBL was mediated by the cytostatic effect of pemetrexed and the cytotoxic effect of cSBL. It thus appears that cSBL has therapeutic potential for the treatment of mesothelioma.


International Journal of Oncology | 2016

RNase activity of sialic acid-binding lectin from bullfrog eggs drives antitumor effect via the activation of p38 MAPK to caspase-3/7 signaling pathway in human breast cancer cells

Yukiko Kariya; Takeo Tatsuta; Shigeki Sugawara; Yoshinobu Kariya; Kazuo Nitta; Masahiro Hosono

Sialic acid-binding lectin obtained from bullfrog eggs (SBL) induces cell death in cancer cells but not in normal cells. This antitumor effect is mediated through its ribo-nuclease (RNase) activity. However, the underlying molecular mechanisms remain unclear. We found that the p38 mitogen-activated protein kinase (MAPK) signaling pathway was activated when SBL induced cell death in three human breast cancer cell lines: SK-BR-3, MCF-7, and MDA-MB231. The suppression of p38 MAPK phosphorylation by a p38 MAPK inhibitor as well as short interference RNA knockdown of p38 MAPK expression significantly decreased cell death and increased the cell viability of SBL-treated MDA-MB231 cells. H103A, an SBL mutant lacking in RNase activity, showed decreased SBL-induced cell death compared with native SBL. However, the loss of RNase activity of SBL had no effect on its internalization into cells. The H103A mutant also displayed decreased phosphorylation of p38 MAPK. Moreover, SBL promoted caspase-3/7 activation followed by a cleavage of poly (ADP-ribose)-polymerase, whereas the SBL mutant, H103A, lost this ability. The SBL-induced caspase-3/7 activation was suppressed by the p38 MAPK inhibitor, SB203580, as well as pan-caspase inhibitor, zVAD-fmk. In the presence of zVAD-fmk, the SBL-induced cell death was decreased. In addition, the cell viability of SBL-treated MDA-MB231 cells recovered by zVAD-fmk treatment. Taken together, our results suggest that the RNase activity of SBL leads to breast cancer cell death through the activation of p38 MAPK followed by the activation of caspase-3/7.

Collaboration


Dive into the Takeo Tatsuta's collaboration.

Top Co-Authors

Avatar

Masahiro Hosono

Tohoku Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Shigeki Sugawara

Tohoku Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Kazuo Nitta

Tohoku Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Yasuhiro Ozeki

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar

Yukiko Ogawa

Tohoku Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Tasuku Kawano

Tohoku Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Sen-itiroh Hakomori

Pacific Northwest Diabetes Research Institute

View shared research outputs
Top Co-Authors

Avatar

Kohta Takahashi

Tohoku Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Yasuhiro Koide

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar

Yukiko Kariya

Fukushima Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge