Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takeru Hayashi is active.

Publication


Featured researches published by Takeru Hayashi.


Cell Host & Microbe | 2010

Helicobacter pylori Exploits Host Membrane Phosphatidylserine for Delivery, Localization, and Pathophysiological Action of the CagA Oncoprotein

Naoko Murata-Kamiya; Kenji Kikuchi; Takeru Hayashi; Hideaki Higashi; Masanori Hatakeyama

When delivered into gastric epithelial cells via type IV secretion, Helicobacter pylori CagA perturbs host cell signaling and thereby promotes gastric carcinogenesis. However, the mechanisms of CagA delivery, localization, and action remain poorly understood. We show that direct contact of H. pylori with epithelial cells induces externalization of the inner leaflet enriched host phospholipid, phosphatidylserine, to the outer leaflet of the host plasma membrane. CagA, which is exposed on the bacterial surface via type IV secretion, interacts with the externalized phosphatidylserine to initiate its entry into cells. CagA delivery also requires energy-dependent host cell processes distinct from known endocytic pathways. Within polarized epithelial cells, CagA is tethered to the inner leaflet of the plasma membrane through interaction with phosphatidylserine and binds the polarity-regulating host kinase PAR1/MARK to induce junctional and polarity defects. Thus, host membrane phosphatidylserine plays a key role in the delivery, localization, and pathophysiological action of CagA.


Developmental Cell | 2013

YAP and TAZ, Hippo Signaling Targets, Act as a Rheostat for Nuclear SHP2 Function

Ryouhei Tsutsumi; Mohammad Masoudi; Atsushi Takahashi; Yumiko Fujii; Takeru Hayashi; Ippei Kikuchi; Yumeko Satou; Masanori Taira; Masanori Hatakeyama

SHP2 is a ubiquitously expressed protein tyrosine phosphatase, deregulation of which is associated with malignant neoplasms and developmental disorders. SHP2 is required for full activation of RAS-Erk signaling in the cytoplasm and is also present in the nucleus, where it promotes Wnt target gene activation through dephosphorylation of parafibromin. SHP2 is distributed both to the cytoplasm and nucleus at low cell density but is excluded from the nucleus at high cell density. Here, we show that SHP2 physically interacts with transcriptional coactivators YAP and TAZ, targets of the cell-density-sensing Hippo signal. Through the interaction, nonphosphorylated YAP/TAZ promote nuclear translocalization of SHP2, which in turn stimulates TCF/LEF- and TEAD-regulated genes via parafibromin dephosphorylation. Conversely, YAP/TAZ phosphorylated by Hippo signaling sequester SHP2 in the cytoplasm, thereby preventing nuclear accumulation of SHP2. Hence, YAP/TAZ serve as a rheostat for nuclear SHP2 function, which is switched off by the Hippo signal.


Cellular Microbiology | 2013

Bacterial EPIYA effectors--where do they come from? What are they? Where are they going?

Takeru Hayashi; Hiroko Morohashi; Masanori Hatakeyama

Recent studies have revealed a distinct class of bacterial effectors defined by the presence of EPIYA or EPIYA‐related motif. These bacterial EPIYA effectors are delivered into host cells via type III or IV secretion, where they undergo tyrosine phosphorylation at the EPIYA motif and thereby manipulate host signalling by promiscuously interacting with multiple SH2 domain‐containing proteins. Up to now, nine EPIYA effectors have been identified from various bacteria. These effectors do not share sequence homology outside the EPIYA motif, arguing against the idea that they have common ancestors. A search of mammalian proteomes revealed the presence of a mammalian EPIYA‐containing protein, Pragmin, which potentiates Src family kinase (SFK) activity by binding and sequestrating the SFK inhibitor Csk upon EPIYA phosphorylation. As several bacterial EPIYA effectors also target Csk, they may have evolved through generation of sequences that mimic the Pragmin EPIYA motif. EPIYA motifs are often diverged through multiple duplications in each bacterial effector. Such a structural plasticity appears to be due to intrinsic disorder of the EPIYA‐containing region, which enables the bacterial effectors to undergo efficient phosphorylation and mediate promiscuous interaction with multiple host proteins. Given the functional versatility of the EPIYA motif, many more bacterial EPIYA effectors will soon be emerging.


Nature microbiology | 2016

Host SHP1 phosphatase antagonizes Helicobacter pylori CagA and can be downregulated by Epstein-Barr virus.

Priya Saju; Naoko Murata-Kamiya; Takeru Hayashi; Yoshie Senda; Lisa Nagase; Saori Noda; Keisuke Matsusaka; Sayaka Funata; Akiko Kunita; Masayuki Urabe; Yasuyuki Seto; Masashi Fukayama; Atsushi Kaneda; Masanori Hatakeyama

Most if not all gastric cancers are associated with chronic infection of the stomach mucosa with Helicobacter pylori cagA-positive strains1–4. Approximately 10% of gastric cancers also harbour Epstein–Barr virus (EBV) in the cancer cells5,6. Following delivery into gastric epithelial cells via type IV secretion7,8, the cagA-encoded CagA protein undergoes tyrosine phosphorylation on the Glu–Pro–Ile–Tyr–Ala (EPIYA) motifs initially by Src family kinases (SFKs) and then by c-Abl9,10. Tyrosine-phosphorylated CagA binds to the pro-oncogenic protein tyrosine phosphatase SHP2 and thereby deregulates the phosphatase activity11,12, which has been considered to play an important role in gastric carcinogenesis13. Here we show that the SHP2 homologue SHP1 interacts with CagA independently of the EPIYA motif. The interaction potentiates the phosphatase activity of SHP1 that dampens the oncogenic action of CagA by dephosphorylating the CagA EPIYA motifs. In vitro infection of gastric epithelial cells with EBV induces SHP1 promoter hypermethylation, which strengthens phosphorylation-dependent CagA action via epigenetic downregulation of SHP1 expression. Clinical specimens of EBV-positive gastric cancers also exhibit SHP1 hypermethylation with reduced SHP1 expression. The results reveal that SHP1 is the long-sought phosphatase that can antagonize CagA. Augmented H. pylori CagA activity, via SHP1 inhibition, might also contribute to the development of EBV-positive gastric cancer.


Scientific Reports | 2015

Dramatic increase in SHP2 binding activity of Helicobacter pylori Western CagA by EPIYA-C duplication: its implications in gastric carcinogenesis

Lisa Nagase; Takeru Hayashi; Toshiya Senda; Masanori Hatakeyama

Infection with cagA-positive Helicobacter pylori is critically associated with the development of gastric cancer. The cagA-encoded CagA is delivered into gastric epithelial cells via type IV secretion, where it interacts with and thereby deregulates the pro-oncogenic phosphatase SHP2. East Asian CagA and Western CagA are two major CagA species produced by H. pylori circulating in East Asian countries and in the rest of the world, respectively. The SHP2 binding site of Western CagA, termed the EPIYA-C segment, variably duplicates and infection with H. pylori carrying Western CagA with multiple EPIYA-C segments is a distinct risk factor of gastric cancer. Here we show that duplication of EPIYA-C from one to two or more increases SHP2 binding of Western CagA by more than one hundredfold. Based on the decisive difference in SHP2 binding, Western CagA can be divided into two types: type I CagA carrying a single EPIYA-C segment and type II CagA carrying multiple EPIYA-C segments. Gastric epithelial cells expressing type II CagA acquire the ability to invade extracellular matrices, a malignant cellular trait associated with deregulated SHP2. A big leap in SHP2 binding activity may therefore provide molecular basis that makes type II Western CagA a distinct gastric cancer risk.


Scientific Reports | 2016

Impact of structural polymorphism for the Helicobacter pylori CagA oncoprotein on binding to polarity-regulating kinase PAR1b.

Hiroko Nishikawa; Takeru Hayashi; Fumio Arisaka; Toshiya Senda; Masanori Hatakeyama

Chronic infection with cagA-positive Helicobacter pylori is the strongest risk factor for atrophic gastritis, peptic ulcers, and gastric cancer. CagA, the product of the cagA gene, is a bacterial oncoprotein, which, upon delivery into gastric epithelial cells, binds to and inhibits the polarity-regulating kinase, partitioning-defective 1b (PAR1b) [also known as microtubule affinity-regulating kinase 2 (MARK2)], via its CagA multimerization (CM) motif. The inhibition of PAR1b elicits junctional and polarity defects, rendering cells susceptible to oncogenesis. Notably, the polymorphism in the CM motif has been identified among geographic variants of CagA, differing in either the copy number or the sequence composition. In this study, through quantitative analysis of the complex formation between CagA and PAR1b, we found that several CagA species have acquired elevated PAR1b-binding activity via duplication of the CM motifs, while others have lost their PAR1b-binding activity. We also found that strength of CagA-PAR1b interaction was proportional to the degrees of stress fiber formation and tight junctional disruption by CagA in gastric epithelial cells. These results indicate that the CM polymorphism is a determinant for the magnitude of CagA-mediated deregulation of the cytoskeletal system and thereby possibly affects disease outcome of cagA-positive H. pylori infection, including gastric cancer.


Biomedical Research-tokyo | 2016

Helicobacter pylori induces IL-1β protein through the inflammasome activation in differentiated macrophagic cells

Shoichiro Kameoka; Takeshi Kameyama; Takaya Hayashi; Seiichi Sato; Naomi Ohnishi; Takeru Hayashi; Naoko Murata-Kamiya; Hideaki Higashi; Masanori Hatakeyama; Akinori Takaoka

More than 50% of people in the world are infected with Helicobacter pylori (H. pylori), which induces various gastric diseases. Especially, epidemiological studies have shown that H. pylori infection is a major risk factor for gastric cancer. It has been reported that the levels of interleukin (IL)-1β are upregulated in gastric tissues of patients with H. pylori infection. In this study, we investigated the induction mechanism of IL-1β during H. pylori infection. We found that IL-1βmRNA and protein were induced in phorbol-12-myristate-13-acetate (PMA)-differentiated THP-1 cells after H. pylori infection. This IL-1β production was inhibited by a caspase-1 inhibitor and a ROS inhibitor. Furthermore, K(+) efflux and Ca(2+) signaling were also involved in this process. These data suggest that NOD-like receptor (NLR) family, pyrin domain containing 3 (NLRP3) and its complex, known as NLRP3 inflammasome, are involved in IL-1β production during H. pylori infection because it is reported that NLRP3 inflammasome is activated by ROS, K(+) efflux and/or Ca(2+) signaling. These findings may provide therapeutic strategy for the control of gastric cancer in H. pylori-infected patients.


Biochemical and Biophysical Research Communications | 2016

Determination of the catalytic activity of LEOPARD syndrome-associated SHP2 mutants toward parafibromin, a bona fide SHP2 substrate involved in Wnt signaling

Saori Noda; Atsushi Takahashi; Takeru Hayashi; Sei-ichi Tanuma; Masanori Hatakeyama

SHP2, encoded by the PTPN11 gene, is a protein tyrosine phosphatase that plays a key role in the proliferation of cells via RAS-ERK activation. SHP2 also promotes Wnt signaling by dephosphorylating parafibromin. Germline missense mutations of PTPN11 are found in more than half of patients with Noonan syndrome (NS) and LEOPARD syndrome (LS), both of which are congenital developmental disorders with multiple common symptoms. However, whereas NS-associated PTPN11 mutations give rise to gain-of-function SHP2 mutants, LS-associated SHP2 mutants are reportedly loss-of-function mutants. To determine the phosphatase activity of LS-associated SHP2 more appropriately, we performed an in vitro phosphatase assay using tyrosine-phosphorylated parafibromin, a biologically relevant substrate of SHP2 and the positive regulator of Wnt signaling that is activated through SHP2-mediated dephosphorylation. We found that LS-associated SHP2 mutants (Y279C, T468M, Q506P, and Q510E) exhibited a substantially reduced phosphatase activity toward parafibromin when compared with wild-type SHP2. Furthermore, each of the LS-associated mutants displayed a differential degree of decrease in phosphatase activity. Deviation of the SHP2 catalytic activity from a certain range, either too strong or too weak, may therefore lead to similar clinical outcomes in NS and LS, possibly through an imbalanced Wnt signal caused by inadequate dephosphorylation of parafibromin.


Scientific Reports | 2018

Evaluating the origin and virulence of a Helicobacter pylori cagA-positive strain isolated from a non-human primate

Kana Hashi; Chihiro Imai; Koji Yahara; Kamrunnesa Tahmina; Takeru Hayashi; Takeshi Azuma; Takako Miyabe-Nishiwaki; Hideyuki Sato; Masao Matsuoka; Sachi Niimi; Munehiro Okamoto; Masanori Hatakeyama

Helicobacter pylori cagA-positive strains are critically involved in the development of gastric cancer. Upon delivery into gastric epithelial cells via type IV secretion, the cagA-encoded CagA interacts with and thereby perturbs the pro-oncogenic phosphatase SHP2 and the polarity-regulating kinase PAR1b via the tyrosine-phosphorylated EPIYA-C/D segment and the CM sequence, respectively. Importantly, sequences spanning these binding regions exhibit variations among CagA proteins, which influence the pathobiological/oncogenic potential of individual CagA. Here we isolated an H. pylori strain (Hp_TH2099) naturally infecting the stomach of a housed macaque, indicating a zoonotic feature of H. pylori infection. Whole genome sequence analysis revealed that Hp_TH2099 belongs to the hpAsia2 cluster and possesses ABC-type Western CagA, which contains hitherto unreported variations in both EPIYA-C and CM sequences. The CM variations almost totally abolished PAR1b binding. Whereas pTyr + 5 variation in the EPIYA-C segment potentiated SHP2-binding affinity, pTyr-2 variation dampened CagA tyrosine phosphorylation and thus impeded CagA-SHP2 complex formation. As opposed to the H. pylori standard strain, infection of mouse ES cell-derived gastric organoids with Hp_TH2099 failed to elicit CagA-dependent epithelial destruction. Thus, the macaque-isolated H. pylori showed low virulence due to attenuated CagA activity through multiple substitutions in the sequences involved in binding with SHP2 and PAR1b.


Acta Crystallographica Section A | 2014

Anaerobic crystallization for protein crystallography

Miki Senda; Takeru Hayashi; Masanori Hatakeyama; Toshiya Senda

protein crystallization, crystallization remains a bottleneck for protein crystallography. In general, there are two major problems. First, how to find crystallization conditions from the results of the initial screening when the initial screening gives no crystals. Second, how to improve reproducibility of crystallization; there are several factors hampering reproducibility of the crystallization. To overcome these problems, we have proposed some crystallization techniques (ACA 2016, ACA2015). In this presentation, we would like to propose an anaerobic crystallization method to address these problems. Oxidation of the protein and crystallization reagents during the crystallization causes some problems. The protein oxidization would lead to a loss of the protein homogeneity, causing a failure of crystallization. In addition, the oxidation of the protein would reduce the protein concentration in crystallization drops via formation of oxidation films of the protein. These are frequent problems in protein crystallization. To prevent these problems, we have developed a system for the anaerobic crystallization. In the anaerobic crystallization, all crystallization experiments should be performed in an anaerobic chamber (Anaerobic ‘HARD’, Hirasawa). Our test experiments of the anaerobic crystallization with various proteins demonstrated clear differences between anaerobic and aerobic conditions. We will report some of recent successful examples of the anaerobic crystallization. The SHP2_SH2 domain in complex with the EPIYA-D peptide could be crystallized under anaerobic conditions; while anaerobic crystallization gave thick crystals with high reproducibility, only very thin needle crystals were obtained with low reproducibility under aerobic conditions.

Collaboration


Dive into the Takeru Hayashi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge